
	

https://supemuzo.bebopim.com/683620376778391599126209867996372692698723?xesawexowupejamonodevagazajevapa=murovurebitivelixanurunogiwozonosujegonorutafizegelagelazizemigufikikapeliwomavelofuwapuzuzokixofemolanidoniroxemukamadebenixumitizubebiviburovibupidonebetariwuxenufapamadososusajolekurefirelewugagafusopaxogef&utm_kwd=math+ceil+java&fezoxakabemakilebatulokisevijeporowamuvuranem=bevodawivagugexorezujubekixakevafuginikakelosoxejulufizopowizujulobezuloxogowozediduvisetewitevowobefufubekenezaw

Math	ceil	java

21	Mar	2025	|	2	min	readThe	java.lang.Math.ceil	()	is	used	to	find	the	smallest	integer	value	that	is	greater	than	or	equal	to	the	argument	or	mathematical	integer.Syntaxpublic	static	double	ceil(double	x)	x=	a	value	This	method	returns	smallest	floating-point	value	that	is	greater	than	or	equal	to	the	argument	and	is	equal	to	a	mathematical	integer.	If
the	argument	is	positive	or	negative	double	value,	this	method	will	return	the	ceil	value.If	the	argument	is	NaN,	this	method	will	return	same	argument.If	the	argument	is	Infinity,	this	method	will	return	Infinity	with	the	same	sign	as	the	argument.If	the	argument	is	positive	or	negative	Zero,	this	method	will	return	Zero	with	same	sign	as	the
argument.If	the	argument	is	less	than	Zero	but	greater	than	-1.0,	this	method	will	return	Negative	Zero	as	output.public	class	CeilExample1	{	public	static	void	main(String[]	args)	{	double	x	=	83.56;	//	Input	positive	value,	Output	ceil	value	of	x	System.out.println(Math.ceil(x));	}	}	Output:Example	2public	class	CeilExample2	{	public	static	void
main(String[]	args)	{	double	x	=	-94.73;	//	Input	negative	value,	Output	ceil	value	of	x	System.out.println(Math.ceil(x));	}	}	Output:Example	3public	class	CeilExample3	{	public	static	void	main(String[]	args)	{	double	x	=	-1.0	/	0;	//	Input	negative	infinity,	Output	negative	infinity	System.out.println(Math.ceil(x));	}	}	Output:Example	4public	class
CeilExample4	{	public	static	void	main(String[]	args)	{	double	x	=	0.0;	//	Input	positive	zero,	Output	positive	zero	System.out.println(Math.ceil(x));	}	}	Output:Example	5public	class	CeilExample5	{	public	static	void	main(String[]	args)	{	double	x	=	-0.25;	//	Input	less	than	zero	but	greater	than	-1.0,	Output	negative	zero
System.out.println(Math.ceil(x));	}	}	Output:	Next	TopicJava	Math			The	Java	Math	ceil(double	a)	returns	the	smallest	(closest	to	negative	infinity)	double	value	that	is	greater	than	or	equal	to	the	argument	and	is	equal	to	a	mathematical	integer.	Special	cases	−	If	the	argument	value	is	already	equal	to	a	mathematical	integer,	then	the	result	is	the
same	as	the	argument.	If	the	argument	is	NaN	or	an	infinity	or	positive	zero	or	negative	zero,	then	the	result	is	the	same	as	the	argument.	If	the	argument	value	is	less	than	zero	but	greater	than	-1.0,	then	the	result	is	negative	zero.	Note	that	the	value	of	Math.ceil(x)	is	exactly	the	value	of	-Math.floor(-x).	Following	is	the	declaration	for
java.lang.Math.ceil()	method	public	static	double	ceil(double	a)	Parameters	a	−	a	value.	Return	Value	This	method	returns	the	smallest	(closest	to	negative	infinity)	floating-point	value	that	is	greater	than	or	equal	to	the	argument	and	is	equal	to	a	mathematical	integer.	Exception	NA	Getting	Smallest	Value	Greater	Than	or	Equal	to	a	Positive	Number
Example	The	following	example	shows	the	usage	of	Math	ceil()	method.	package	com.tutorialspoint;	public	class	MathDemo	{	public	static	void	main(String[]	args)	{	//	get	a	double	number	double	x	=	10.7;	//	print	the	ceil	of	the	number	System.out.println("Math.ceil("	+	x	+	")="	+	Math.ceil(x));	}	}	Output	Let	us	compile	and	run	the	above	program,
this	will	produce	the	following	result	−	Math.ceil(10.7)=11.0	Getting	Smallest	Value	Greater	Than	or	Equal	to	Zero	Example	The	following	example	shows	the	usage	of	Math	ceil()	method	of	zero	value.	package	com.tutorialspoint;	public	class	MathDemo	{	public	static	void	main(String[]	args)	{	//	get	a	double	number	double	x	=	0.0;	//	print	the	ceil	of
the	number	System.out.println("Math.ceil("	+	x	+	")="	+	Math.ceil(x));	}	}	Output	Let	us	compile	and	run	the	above	program,	this	will	produce	the	following	result	−	Math.ceil(0.0)=0.0	Getting	Smallest	Value	Greater	Than	or	Equal	to	a	Negative	Number	Example	The	following	example	shows	the	usage	of	Math	ceil()	method	of	a	negative	number.
package	com.tutorialspoint;	public	class	MathDemo	{	public	static	void	main(String[]	args)	{	//	get	a	double	number	double	x	=	-10.7;	//	print	the	ceil	of	the	number	System.out.println("Math.ceil("	+	x	+	")="	+	Math.ceil(x));	}	}	Output	Let	us	compile	and	run	the	above	program,	this	will	produce	the	following	result	−	Math.ceil(-10.7)=-10.0
java_lang_math.htm	In	this	example,	we	will	learn	about	the	Math.ceil	Java	method.	Java	math	class	contains	methods	for	performing	basic	numeric	operations	such	as	the	elementary	exponential,	logarithm,	square	root,	and	trigonometric	functions.	Some	of	the	most	important	of	Math	class	methods	are	min(),	max(),	avg(),	sin(),	cos().	You	could	take
a	look	at	all	methods	of	Math	class	in	the	java	doc.But	today	we	will	be	familiar	with	the	ceil	method	of	Math	class.Math.ceil	method	always	rounds	a	number	up	to	the	next	largest	double	or	in	other	words	returns	the	smallest	double	value	that	is	greater	than	or	equal	to	the	argument.	For	example:	System.out.println(Math.ceil(1.2));	//	expected
result:	2.0	System.out.println(Math.ceil(2.0001));	//	expected	result:	3.0	System.out.println(Math.ceil(-2.01));	//	expected	result:	-2.0	The	following	snippet	shows	the	syntax	of	Math.ceil	method.	public	static	double	ceil(double	a)	If	the	input	is	an	infinity	then	the	result	is	infinity.If	the	input	is	a	positive	zero	then	the	result	is	a	positive	zero.If	the	input
is	negative	zero	then	the	result	is	negative	zero.If	the	input	is	less	than	zero	but	greater	than	-1	then	the	result	is	negative	zero.public	class	CeilExample	{	public	static	void	main(String[]	args)	{	//	Integer	number	System.out.println(Math.ceil(2));	System.out.println(Math.ceil(1.2));	System.out.println(Math.ceil(2.001));	//	Infinity	example
System.out.println(Math.ceil(1.0/0));	//	Positive	zero	System.out.println(Math.ceil(0));	//	Negative	zero	System.out.println(Math.ceil(-0.0));	//	Negative	number	less	than	zero	but	greater	than	-1	System.out.println(Math.ceil(-0.001));	//	Negative	number	System.out.println(Math.ceil(-1.02));	}	}After	running	the	above	code	in	any	IDE	of	your	choice	you’ll
receive	the	following	output:	2.0	2.0	3.0	Infinity	0.0	-0.0	-0.0	-1.0	In	this	article	we	reviewed	the	ceil()	method	from	java.lang.Math	class.	Math.ceil	method	always	rounds	a	number	up	to	the	next	largest	double.That	was	a	Math.ceil	Java	Example.Download	You	can	download	the	full	source	code	of	this	example	here:	Math.ceil	Java	Example	Related
Articles		Premium	Read:	Access	my	best	content	on	Medium	member-only	articles	—	deep	dives	into	Java,	Spring	Boot,	Microservices,	backend	architecture,	interview	preparation,	career	advice,	and	industry-standard	best	practices.		Some	premium	posts	are	free	to	read	—	no	account	needed.	Follow	me	on	Medium	to	stay	updated	and	support	my
writing.		Top	10	Udemy	Courses	(Huge	Discount):	Explore	My	Udemy	Courses	—	Learn	through	real-time,	project-based	development.	▶	Subscribe	to	My	YouTube	Channel	(172K+	subscribers):	Java	Guides	on	YouTube	The	Math.ceil()	method	in	Java	is	used	to	return	the	smallest	(closest	to	negative	infinity)	double	value	that	is	greater	than	or	equal
to	the	argument	and	is	equal	to	a	mathematical	integer.	Table	of	Contents	Introduction	ceil()	Method	Syntax	Understanding	ceil()	Examples	Basic	Usage	Using	ceil()	with	Different	Values	Real-World	Use	Case	Conclusion	Introduction	The	Math.ceil()	method	is	a	part	of	the	Math	class	in	Java	and	is	used	to	round	a	number	up	to	the	nearest	integer
value.	The	returned	value	is	of	type	double	and	represents	the	smallest	integer	greater	than	or	equal	to	the	input	value.	ceil()	Method	Syntax	The	syntax	for	the	ceil()	method	is	as	follows:	public	static	double	ceil(double	a)	Parameters:	a:	The	value	to	be	rounded	up.	Returns:	The	smallest	(closest	to	negative	infinity)	double	value	that	is	greater	than	or
equal	to	the	argument	and	is	equal	to	a	mathematical	integer.	Understanding	ceil()	The	Math.ceil()	method	calculates	the	ceiling	of	a	given	value,	which	means	it	rounds	the	value	up	to	the	nearest	integer.	This	method	is	useful	when	you	need	to	ensure	that	a	value	is	rounded	up,	regardless	of	its	fractional	part.	Examples	Basic	Usage	To	demonstrate
the	basic	usage	of	ceil(),	we	will	calculate	the	ceiling	of	a	few	values.	Example	public	class	CeilExample	{	public	static	void	main(String[]	args)	{	double	value1	=	2.3;	double	value2	=	-2.3;	double	value3	=	3.0;	double	result1	=	Math.ceil(value1);	double	result2	=	Math.ceil(value2);	double	result3	=	Math.ceil(value3);	System.out.println("Ceiling	of	"	+
value1	+	"	is	"	+	result1);	System.out.println("Ceiling	of	"	+	value2	+	"	is	"	+	result2);	System.out.println("Ceiling	of	"	+	value3	+	"	is	"	+	result3);	}	}	Output:	Ceiling	of	2.3	is	3.0	Ceiling	of	-2.3	is	-2.0	Ceiling	of	3.0	is	3.0	Using	ceil()	with	Different	Values	You	can	use	the	ceil()	method	with	various	values	to	calculate	their	ceilings.	Example	public	class
CeilDifferentValuesExample	{	public	static	void	main(String[]	args)	{	double[]	values	=	{1.1,	1.5,	1.9,	-1.1,	-1.5,	-1.9,	0.0};	for	(double	value	:	values)	{	double	result	=	Math.ceil(value);	System.out.println("Ceiling	of	"	+	value	+	"	is	"	+	result);	}	}	}	Output:	Ceiling	of	1.1	is	2.0	Ceiling	of	1.5	is	2.0	Ceiling	of	1.9	is	2.0	Ceiling	of	-1.1	is	-1.0	Ceiling	of	-1.5
is	-1.0	Ceiling	of	-1.9	is	-1.0	Ceiling	of	0.0	is	0.0	Real-World	Use	Case	Rounding	Up	Prices	In	real-world	scenarios,	the	Math.ceil()	method	can	be	used	to	round	up	prices	to	the	nearest	whole	number.	This	is	useful	in	financial	applications	where	you	need	to	ensure	that	prices	are	rounded	up	to	avoid	fractional	values.	Example	public	class
RoundUpPriceExample	{	public	static	void	main(String[]	args)	{	double	price	=	19.95;	double	roundedPrice	=	Math.ceil(price);	System.out.println("The	rounded	up	price	is	$"	+	roundedPrice);	}	}	Output:	The	rounded	up	price	is	$20.0	Conclusion	The	Math.ceil()	method	in	Java	provides	a	way	to	round	a	given	value	up	to	the	nearest	integer.	By
understanding	how	to	use	this	method,	you	can	perform	various	rounding	operations	and	solve	problems	that	require	values	to	be	rounded	up.	Whether	you	are	working	with	simple	rounding	tasks	or	complex	financial	calculations,	the	ceil()	method	offers	a	reliable	tool	for	ensuring	that	values	are	rounded	up	correctly.	❮	Math	Methods	Round
numbers	up	to	the	nearest	integer:	System.out.println(Math.ceil(0.60));	System.out.println(Math.ceil(0.40));	System.out.println(Math.ceil(5));	System.out.println(Math.ceil(5.1));	System.out.println(Math.ceil(-5.1));	System.out.println(Math.ceil(-5.9));	Try	it	Yourself	»	Definition	and	Usage	The	ceil()	method	rounds	a	number	UP	to	the	nearest	integer.
Tip:	To	round	a	number	DOWN	to	the	nearest	integer,	look	at	the	floor()	method.	Tip:	To	round	a	number	to	the	nearest	integer	in	either	direction,	look	at	the	round()	method.	Syntax	public	static	double	ceil(double	number)	Parameter	Values	Parameter	Description	number	Required.	A	number	to	round	up.	Technical	Details	Returns:	A	double	value
representing	the	nearest	integer	greater	or	equal	to	a	number.	Java	version:	Any	❮	Math	Methods	The	java.lang.Math.ceil()	returns	the	double	value	that	is	greater	than	or	equal	to	the	argument	and	is	equal	to	the	nearest	mathematical	integer.		Note:	If	the	argument	is	Integer,	then	the	result	is	Integer.If	the	argument	is	NaN	or	an	infinity	or	positive
zero	or	negative	zero,	then	the	result	is	the	same	as	the	argument.If	the	argument	value	is	less	than	zero	but	greater	than	-1.0,	then	the	result	is	negative	zero.	Syntax:		public	static	double	ceil(double	a)	a	:	the	argument	whose	ceil	value	is	to	be	determined		Returns	:	This	method	returns	the	double	value	that	is	greater	than	or	equal	to	the	argument
and	is	equal	to	the	nearest	mathematical	integer.	Example	01:To	show	working	of	java.lang.Math.ceil()	method.		java	//	Java	program	to	demonstrate	working	//	of	java.lang.Math.ceil()	method	import	java.lang.Math;	class	Gfg	{	//	driver	code	public	static	void	main(String	args[])	{	double	a	=	4.3;	double	b	=	1.0	/	0;	double	c	=	0.0;	double	d	=	-0.0;
double	e	=	-0.12;	System.out.println(Math.ceil(a));	//	Input	Infinity,	Output	Infinity	System.out.println(Math.ceil(b));	//	Input	Positive	Zero,	Output	Positive	Zero	System.out.println(Math.ceil(c));	//	Input	Negative	Zero,	Output	Negative	Zero	System.out.println(Math.ceil(d));	//	Input	less	than	zero	but	greater	than	-1.0	//	Output	Negative	zero
System.out.println(Math.ceil(e));	}	}	Output:	5.0	Infinity	0.0	-0.0	-0.0	Example	02:	To	show	the	working	of	ceil()	with	a	positive	double	value	Java	import	java.io.*;	class	GFG	{	public	static	void	main	(String[]	args)	{	double	number	=	3.5;	double	result	=	Math.ceil(number);	System.out.println(result);	//	Output:	4.0	}	}	Output	:	4.0	The	ceil()	method
rounds	the	specified	double	value	upward	and	returns	it.	The	rounded	value	will	be	equal	to	the	mathematical	integer.	That	is,	the	value	3.24	will	be	rounded	to	4.0	which	is	equal	to	integer	4.	Example	class	Main	{	public	static	void	main(String[]	args)	{	double	a	=	3.24;	System.out.println(Math.ceil(a));	}	}	//	Output:	4.0	The	syntax	of	the	ceil()
method	is:	Math.ceil(double	value)	Here,	ceil()	is	a	static	method.	Hence,	we	are	accessing	the	method	using	the	class	name,	Math.	ceil()	Parameters	The	ceil()	method	takes	a	single	parameter.	value	-	number	which	is	to	be	rounded	upward	ceil()	Return	Value	returns	the	rounded	value	that	is	equal	to	the	mathematical	integer	Note:	The	returned
value	will	be	the	smallest	value	that	is	greater	than	or	equal	to	the	specified	argument.	Example:	Java	Math.ceil()	class	Main	{	public	static	void	main(String[]	args)	{	//	Math.ceil()	method	//	value	greater	than	5	after	decimal	double	a	=	1.878;	System.out.println(Math.ceil(a));	//	2.0	//	value	equals	to	5	after	decimal	double	b	=	1.5;
System.out.println(Math.ceil(b));	//	2.0	//	value	less	than	5	after	decimal	double	c	=	1.34;	System.out.println(Math.ceil(c));	//	2.0	}	}	Also	Read:	Java	Math.floor()	Java	Math.round()	In	Java,	the	process	of	rounding	numbers	is	a	frequently	performed	operation	in	a	range	of	applications,	spanning	from	mathematical	computations	to	formatting	output	for
presentation.	Let	us	delve	into	a	practical	approach	to	exploring	Java	Math	Ceil,	Floor	and	Round	methods.1.	Understanding	Math.ceil(),	Math.floor(),	and	Math.round()	in	JavaIn	Java,	the	Math	class	provides	several	methods	for	rounding	numbers	to	different	precision	levels.	Three	commonly	used	methods	are	Math.ceil(),	Math.floor(),	and
Math.round().1.1	Math.ceil()The	Math.ceil()	method	returns	the	smallest	integer	greater	than	or	equal	to	the	specified	numeric	value.	It	effectively	rounds	up	the	number	to	the	nearest	whole	number,	regardless	of	the	decimal	part.double	result	=	Math.ceil(7.25);	//	Result:	8.0	1.2	Math.floor()The	Math.floor()	method,	on	the	other	hand,	returns	the
largest	integer	less	than	or	equal	to	the	specified	numeric	value.	It	effectively	rounds	down	the	number	to	the	nearest	whole	number,	ignoring	the	decimal	part.double	result	=	Math.floor(7.75);	//	Result:	7.0	1.3	Math.round()The	Math.round()	method	rounds	a	floating-point	value	to	the	nearest	integer.	If	the	decimal	part	is	.5	or	greater,	it	rounds	up;
otherwise,	it	rounds	down.long	result	=	Math.round(7.5);	//	Result:	8	2.	Using	Math.ceil()	for	“Rounding	Up”	a	NumberThe	Math.ceil()	method	in	Java	is	commonly	used	for	rounding	up	a	number	to	the	nearest	integer	or,	more	specifically,	to	the	smallest	integer	greater	than	or	equal	to	the	original	value.	Here’s	an	example:package
com.javacodegeek;	public	class	RoundingUpExample	{	public	static	void	main(String[]	args)	{	double	originalNumber	=	6.75;	//	Using	Math.ceil()	to	round	up	the	number	double	roundedUpNumber	=	Math.ceil(originalNumber);	//	Displaying	the	results	System.out.println("Original	Number:	"	+	originalNumber);	System.out.println("Rounded	Up
Number:	"	+	roundedUpNumber);	}	}	In	this	example,	the	Math.ceil()	method	is	applied	to	originalNumber,	which	is	6.75.	The	result	is	then	stored	in	the	variable	roundedUpNumber.	When	you	run	this	program,	you’ll	get	output	similar	to	the	following:Original	Number:	6.75	Rounded	Up	Number:	7.0	3.	Using	Math.floor()	for	“Rounding	Down”	a
NumberThe	Math.floor()	method	in	Java	is	commonly	used	for	rounding	down	a	number	to	the	nearest	integer	or,	more	precisely,	to	the	largest	integer	less	than	or	equal	to	the	original	value.	Here’s	an	example:package	com.javacodegeek;	public	class	RoundingDownExample	{	public	static	void	main(String[]	args)	{	double	originalNumber	=	8.25;	//
Using	Math.floor()	to	round	down	the	number	double	roundedDownNumber	=	Math.floor(originalNumber);	//	Displaying	the	results	System.out.println("Original	Number:	"	+	originalNumber);	System.out.println("Rounded	Down	Number:	"	+	roundedDownNumber);	}	}	In	this	example,	the	Math.floor()	method	is	applied	to	originalNumber,	which	is
8.25.	The	result	is	then	stored	in	the	variable	roundedDownNumber.	When	you	run	this	program,	you’ll	get	output	similar	to	the	following:Original	Number:	8.25	Rounded	Down	Number:	8.0	4.	Using	Math.round()	for	“Rounding	to	the	Nearest	Integer”The	Math.round()	method	in	Java	is	commonly	used	for	rounding	a	number	to	the	nearest	integer.	It
uses	the	“round	half	to	even”	strategy,	also	known	as	“bankers’	rounding,”	where	values	equidistant	to	the	two	nearest	integers	are	rounded	to	the	even	integer.	Here’s	an	example:package	com.javacodegeek;	public	class	RoundingToNearestIntegerExample	{	public	static	void	main(String[]	args)	{	double	originalNumber	=	5.75;	//	Using
Math.round()	to	round	to	the	nearest	integer	long	roundedNumber	=	Math.round(originalNumber);	//	Displaying	the	results	System.out.println("Original	Number:	"	+	originalNumber);	System.out.println("Rounded	Number:	"	+	roundedNumber);	}	}	In	this	example,	the	Math.round()	method	is	applied	to	originalNumber,	which	is	5.75.	The	result	is
then	stored	in	the	variable	roundedNumber.	When	you	run	this	program,	you’ll	get	output	similar	to	the	following:Original	Number:	5.75	Rounded	Number:	6	5.	ConclusionIn	conclusion,	when	working	with	numerical	values	in	Java,	the	Math	class	provides	three	essential	methods	for	rounding:	Math.ceil()	for	rounding	up	to	the	nearest	integer,
Math.floor()	for	rounding	down	to	the	nearest	integer,	and	Math.round()	for	rounding	to	the	nearest	integer	using	the	“round	half	to	even”	strategy.	These	methods	are	invaluable	in	a	variety	of	applications,	from	mathematical	calculations	to	formatting	output	for	display.	Whether	adjusting	data	for	specific	requirements	or	handling	mathematical
operations	that	demand	integer	values,	these	rounding	methods	offer	precise	control	over	how	numbers	are	processed	in	Java.	Depending	on	the	context	and	the	desired	outcome,	developers	can	choose	the	appropriate	method	to	ensure	accurate	and	efficient	handling	of	numerical	data	in	their	applications.	Java	has	had	several	advanced	usage
application	including	working	with	complex	calculations	in	physics,	architecture/designing	of	structures,	working	with	Maps	and	corresponding	latitudes/longitudes,	etc.	All	such	applications	require	using	complex	calculations/equations	that	are	tedious	to	perform	manually.	Programmatically,	such	calculations	would	involve	usage	of	logarithms,
trigonometry,	exponential	equations,	etc.	Now,	you	cannot	have	all	the	log	or	trigonometry	tables	hard-coded	somewhere	in	your	application	or	data.	The	data	would	be	enormous	and	complex	to	maintain.	Java	provides	a	very	useful	class	for	this	purpose.	It	is	the	Math	java	class	(java.lang.Math).	This	class	provides	methods	for	performing	the
operations	like	exponential,	logarithm,	roots	and	trigonometric	equations	too.	Let	us	have	a	look	at	the	methods	provided	by	the	Java	Math	class.	The	two	most	fundamental	elements	in	Math	are	the	‘e’	(base	of	the	natural	logarithm)	and	‘pi’	(ratio	of	the	circumference	of	a	circle	to	its	diameter).	These	two	constants	are	often	required	in	the	above
calculations/operations.	Hence	the	Math	class	java	provides	these	two	constants	as	double	fields.	Math.E	–	having	a	value	as	2.718281828459045	Math.PI	–	having	a	value	as	3.141592653589793	A)	Let	us	have	a	look	at	the	table	below	that	shows	us	the	Basic	methods	and	its	description	Method	Description	Arguments	abs	Returns	the	absolute	value
of	the	argument	Double,	float,	int,	long	round	Returns	the	closed	int	or	long	(as	per	the	argument)	double	or	float	ceil	Math	ceil	function	in	Java	returns	the	smallest	integer	that	is	greater	than	or	equal	to	the	argument	Double	floor	Java	floor	method	returns	the	largest	integer	that	is	less	than	or	equal	to	the	argument	Double	min	Returns	the	smallest
of	the	two	arguments	Double,	float,	int,	long	max	Returns	the	largest	of	the	two	arguments	Double,	float,	int,	long	Below	is	the	code	implementation	of	the	above	methods:	Note:	There	is	no	need	to	explicitly	import	java.lang.Math	as	its	imported	implicitly.	All	its	methods	are	static.	Integer	Variable	int	i1	=	27;	int	i2	=	-45;	Double(decimal)	variables
double	d1	=	84.6;	double	d2	=	0.45;	Java	Math	abs()	method	with	Example	Java	Math	abs()	method	returns	the	absolute	value	of	the	argument.	public	class	Guru99	{	public	static	void	main(String	args[])	{	int	i1	=	27;	int	i2	=	-45;	double	d1	=	84.6;	double	d2	=	0.45;	System.out.println("Absolute	value	of	i1:	"	+	Math.abs(i1));
System.out.println("Absolute	value	of	i2:	"	+	Math.abs(i2));	System.out.println("Absolute	value	of	d1:	"	+	Math.abs(d1));	System.out.println("Absolute	value	of	d2:	"	+	Math.abs(d2));	}	}	Expected	Output:	Absolute	value	of	i1:	27	Absolute	value	of	i2:	45	Absolute	value	of	d1:	84.6	Absolute	value	of	d2:	0.45	Java	Math.round()	method	with	Example
Math.round()	method	in	Java	returns	the	closed	int	or	long	as	per	the	argument.	Below	is	the	example	of	math.round	Java	method.	public	class	Guru99	{	public	static	void	main(String	args[])	{	double	d1	=	84.6;	double	d2	=	0.45;	System.out.println("Round	off	for	d1:	"	+	Math.round(d1));	System.out.println("Round	off	for	d2:	"	+	Math.round(d2));	}	}
Expected	Output:	Round	off	for	d1:	85	Round	off	for	d2:	0	Java	Math.ceil	and	Math.floor	method	with	Example	The	Math.ceil	and	Math.floor	in	Java	methods	are	used	to	return	the	smallest	and	largest	integer	that	are	greater	than	or	equal	to	the	argument.	Below	is	the	Math	floor	and	ceiling	Java	example.	public	class	Guru99	{	public	static	void
main(String	args[])	{	double	d1	=	84.6;	double	d2	=	0.45;	System.out.println("Ceiling	of	'"	+	d1	+	"'	=	"	+	Math.ceil(d1));	System.out.println("Floor	of	'"	+	d1	+	"'	=	"	+	Math.floor(d1));	System.out.println("Ceiling	of	'"	+	d2	+	"'	=	"	+	Math.ceil(d2));	System.out.println("Floor	of	'"	+	d2	+	"'	=	"	+	Math.floor(d2));	}	}	We	will	get	the	below	output	of	the
math.ceil	in	Java	example.	Expected	Output:	Ceiling	of	'84.6'	=	85.0	Floor	of	'84.6'	=	84.0	Ceiling	of	'0.45'	=	1.0	Floor	of	'0.45'	=	0.0	Java	Math.min()	method	with	Example	The	Java	Math.min()	method	returns	the	smallest	of	the	two	arguments.	public	class	Guru99	{	public	static	void	main(String	args[])	{	int	i1	=	27;	int	i2	=	-45;	double	d1	=	84.6;
double	d2	=	0.45;	System.out.println("Minimum	out	of	'"	+	i1	+	"'	and	'"	+	i2	+	"'	=	"	+	Math.min(i1,	i2));	System.out.println("Maximum	out	of	'"	+	i1	+	"'	and	'"	+	i2	+	"'	=	"	+	Math.max(i1,	i2));	System.out.println("Minimum	out	of	'"	+	d1	+	"'	and	'"	+	d2	+	"'	=	"	+	Math.min(d1,	d2));	System.out.println("Maximum	out	of	'"	+	d1	+	"'	and	'"	+	d2	+	"'	=
"	+	Math.max(d1,	d2));	}	}	Expected	Output:	Minimum	out	of	'27'	and	'-45'	=	-45	Maximum	out	of	'27'	and	'-45'	=	27	Minimum	out	of	'84.6'	and	'0.45'	=	0.45	Maximum	out	of	'84.6'	and	'0.45'	=	84.6	B)	Let	us	have	a	look	at	the	table	below	that	shows	us	the	Exponential	and	Logarithmic	methods	and	its	description-	Method	Description	Arguments	exp
Returns	the	base	of	natural	log	(e)	to	the	power	of	argument	Double	Log	Returns	the	natural	log	of	the	argument	double	Pow	Takes	2	arguments	as	input	and	returns	the	value	of	the	first	argument	raised	to	the	power	of	the	second	argument	Double	floor	Java	math	floor	returns	the	largest	integer	that	is	less	than	or	equal	to	the	argument	Double	Sqrt
Returns	the	square	root	of	the	argument	Double	Below	is	the	code	implementation	of	the	above	methods:	(The	same	variables	are	used	as	above)	public	class	Guru99	{	public	static	void	main(String	args[])	{	double	d1	=	84.6;	double	d2	=	0.45;	System.out.println("exp("	+	d2	+	")	=	"	+	Math.exp(d2));	System.out.println("log("	+	d2	+	")	=	"	+
Math.log(d2));	System.out.println("pow(5,	3)	=	"	+	Math.pow(5.0,	3.0));	System.out.println("sqrt(16)	=	"	+	Math.sqrt(16));	}	}	Expected	Output:	exp(0.45)	=	1.568312185490169	log(0.45)	=	-0.7985076962177716	pow(5,	3)	=	125.0	sqrt(16)	=	4.0	C)	Let	us	have	a	look	at	the	table	below	that	shows	us	the	Trigonometric	methods	and	its	description-
Method	Description	Arguments	Sin	Returns	the	Sine	of	the	specified	argument	Double	Cos	Returns	the	Cosine	of	the	specified	argument	double	Tan	Returns	the	Tangent	of	the	specified	argument	Double	Atan2	Converts	rectangular	coordinates	(x,	y)	to	polar(r,	theta)	and	returns	theta	Double	toDegrees	Converts	the	arguments	to	degrees	Double	Sqrt
Returns	the	square	root	of	the	argument	Double	toRadians	Converts	the	arguments	to	radians	Double	Default	Arguments	are	in	Radians	Below	is	the	code	implementation:	public	class	Guru99	{	public	static	void	main(String	args[])	{	double	angle_30	=	30.0;	double	radian_30	=	Math.toRadians(angle_30);	System.out.println("sin(30)	=	"	+
Math.sin(radian_30));	System.out.println("cos(30)	=	"	+	Math.cos(radian_30));	System.out.println("tan(30)	=	"	+	Math.tan(radian_30));	System.out.println("Theta	=	"	+	Math.atan2(4,	2));	}	}	Expected	Output:	sin(30)	=	0.49999999999999994	cos(30)	=	0.8660254037844387	tan(30)	=	0.5773502691896257	Theta	=	1.1071487177940904	Now,	with
the	above,	you	can	also	design	your	own	scientific	calculator	in	java.

