
	

https://gilesisawuri.nurepikis.com/189553881940617579193479300285837631448716?difogudutixedunumetadopefegibekudilirosuko=sapinetamowewirufubuvoguwejisopedulusugenobiniferijililulexelodirezujebobinusofefalazomelazadibelasakizerajifivoxebipijageputixozowukokonalapijinifikokazudelokutifemidekinuganodigufeveximefigemuporiso&utm_kwd=computer+architecture+and+organization+jp+hayes+pdf+free+download&podifivimefizunemulidoxuxukufuketazipekepomewetakejoduvazesikatiwowotumibaxorofubokezakixanelowotigi=bafebatovagituzumajosotizuporixifipazolezewiwojivixosojigerivurudamogudefirobusidefukijivozimoxonivajekevexikemubiroresojaseloritegagolukusibo

This	book	is	intended	primarily	as	a	text	for	computer	science	and	electrical	engineering	courses	at	the	advanced	undergraduate	or	beginning	graduate	levels.	While	its	emphasis	is	on	computer	hardware	and	systems,	the	relevant	aspects	of	software	are	also	treated.	Set	of	rules	describing	computer	system	This	article's	lead	section	may	be	too	short
to	adequately	summarize	the	key	points.	Please	consider	expanding	the	lead	to	provide	an	accessible	overview	of	all	important	aspects	of	the	article.	(November	2023)	Block	diagram	of	a	basic	computer	with	uniprocessor	CPU.	Black	lines	indicate	control	flow,	whereas	red	lines	indicate	data	flow.	Arrows	indicate	the	direction	of	flow.	In	computer
science	and	computer	engineering,	computer	architecture	is	a	description	of	the	structure	of	a	computer	system	made	from	component	parts.[1]	It	can	sometimes	be	a	high-level	description	that	ignores	details	of	the	implementation.[2]	At	a	more	detailed	level,	the	description	may	include	the	instruction	set	architecture	design,	microarchitecture
design,	logic	design,	and	implementation.[3]	The	first	documented	computer	architecture	was	in	the	correspondence	between	Charles	Babbage	and	Ada	Lovelace,	describing	the	analytical	engine.	While	building	the	computer	Z1	in	1936,	Konrad	Zuse	described	in	two	patent	applications	for	his	future	projects	that	machine	instructions	could	be	stored
in	the	same	storage	used	for	data,	i.e.,	the	stored-program	concept.[4][5]	Two	other	early	and	important	examples	are:	John	von	Neumann's	1945	paper,	First	Draft	of	a	Report	on	the	EDVAC,	which	described	an	organization	of	logical	elements;[6]	and	Alan	Turing's	more	detailed	Proposed	Electronic	Calculator	for	the	Automatic	Computing	Engine,
also	1945	and	which	cited	John	von	Neumann's	paper.[7]	The	term	"architecture"	in	computer	literature	can	be	traced	to	the	work	of	Lyle	R.	Johnson	and	Frederick	P.	Brooks,	Jr.,	members	of	the	Machine	Organization	department	in	IBM's	main	research	center	in	1959.	Johnson	had	the	opportunity	to	write	a	proprietary	research	communication	about
the	Stretch,	an	IBM-developed	supercomputer	for	Los	Alamos	National	Laboratory	(at	the	time	known	as	Los	Alamos	Scientific	Laboratory).	To	describe	the	level	of	detail	for	discussing	the	luxuriously	embellished	computer,	he	noted	that	his	description	of	formats,	instruction	types,	hardware	parameters,	and	speed	enhancements	were	at	the	level	of
"system	architecture",	a	term	that	seemed	more	useful	than	"machine	organization".[8]	Subsequently,	Brooks,	a	Stretch	designer,	opened	Chapter	2	of	a	book	called	Planning	a	Computer	System:	Project	Stretch	by	stating,	"Computer	architecture,	like	other	architecture,	is	the	art	of	determining	the	needs	of	the	user	of	a	structure	and	then	designing
to	meet	those	needs	as	effectively	as	possible	within	economic	and	technological	constraints."[9]	Brooks	went	on	to	help	develop	the	IBM	System/360	line	of	computers,	in	which	"architecture"	became	a	noun	defining	"what	the	user	needs	to	know".[10]	The	System/360	line	was	succeeded	by	several	compatible	lines	of	computers,	including	the
current	IBM	Z	line.	Later,	computer	users	came	to	use	the	term	in	many	less	explicit	ways.[11]	The	earliest	computer	architectures	were	designed	on	paper	and	then	directly	built	into	the	final	hardware	form.[12]	Later,	computer	architecture	prototypes	were	physically	built	in	the	form	of	a	transistor–transistor	logic	(TTL)	computer—such	as	the
prototypes	of	the	6800	and	the	PA-RISC—tested,	and	tweaked,	before	committing	to	the	final	hardware	form.	As	of	the	1990s,	new	computer	architectures	are	typically	"built",	tested,	and	tweaked—inside	some	other	computer	architecture	in	a	computer	architecture	simulator;	or	inside	a	FPGA	as	a	soft	microprocessor;	or	both—before	committing	to
the	final	hardware	form.[13]	The	discipline	of	computer	architecture	has	three	main	subcategories:[14]	Instruction	set	architecture	(ISA):	defines	the	machine	code	that	a	processor	reads	and	acts	upon	as	well	as	the	word	size,	memory	address	modes,	processor	registers,	and	data	type.	Microarchitecture:	also	known	as	"computer	organization",	this
describes	how	a	particular	processor	will	implement	the	ISA.[15]	The	size	of	a	computer's	CPU	cache	for	instance,	is	an	issue	that	generally	has	nothing	to	do	with	the	ISA.	Systems	design:	includes	all	of	the	other	hardware	components	within	a	computing	system,	such	as	data	processing	other	than	the	CPU	(e.g.,	direct	memory	access),	virtualization,
and	multiprocessing.	There	are	other	technologies	in	computer	architecture.	The	following	technologies	are	used	in	bigger	companies	like	Intel,	and	were	estimated	in	2002[14]	to	count	for	1%	of	all	of	computer	architecture:	Macroarchitecture:	architectural	layers	more	abstract	than	microarchitecture	Assembly	instruction	set	architecture:	A	smart
assembler	may	convert	an	abstract	assembly	language	common	to	a	group	of	machines	into	slightly	different	machine	language	for	different	implementations.	Programmer-visible	macroarchitecture:	higher-level	language	tools	such	as	compilers	may	define	a	consistent	interface	or	contract	to	programmers	using	them,	abstracting	differences	between
underlying	ISAs	and	microarchitectures.	For	example,	the	C,	C++,	or	Java	standards	define	different	programmer-visible	macroarchitectures.	Microcode:	microcode	is	software	that	translates	instructions	to	run	on	a	chip.	It	acts	like	a	wrapper	around	the	hardware,	presenting	a	preferred	version	of	the	hardware's	instruction	set	interface.	This
instruction	translation	facility	gives	chip	designers	flexible	options:	E.g.	1.	A	new	improved	version	of	the	chip	can	use	microcode	to	present	the	exact	same	instruction	set	as	the	old	chip	version,	so	all	software	targeting	that	instruction	set	will	run	on	the	new	chip	without	needing	changes.	E.g.	2.	Microcode	can	present	a	variety	of	instruction	sets	for
the	same	underlying	chip,	allowing	it	to	run	a	wider	variety	of	software.	Pin	architecture:	The	hardware	functions	that	a	microprocessor	should	provide	to	a	hardware	platform,	e.g.,	the	x86	pins	A20M,	FERR/IGNNE	or	FLUSH.	Also,	messages	that	the	processor	should	emit	so	that	external	caches	can	be	invalidated	(emptied).	Pin	architecture
functions	are	more	flexible	than	ISA	functions	because	external	hardware	can	adapt	to	new	encodings,	or	change	from	a	pin	to	a	message.	The	term	"architecture"	fits,	because	the	functions	must	be	provided	for	compatible	systems,	even	if	the	detailed	method	changes.	Computer	architecture	is	concerned	with	balancing	the	performance,	efficiency,
cost,	and	reliability	of	a	computer	system.	The	case	of	instruction	set	architecture	can	be	used	to	illustrate	the	balance	of	these	competing	factors.	More	complex	instruction	sets	enable	programmers	to	write	more	space	efficient	programs,	since	a	single	instruction	can	encode	some	higher-level	abstraction	(such	as	the	x86	Loop	instruction).[16]
However,	longer	and	more	complex	instructions	take	longer	for	the	processor	to	decode	and	can	be	more	costly	to	implement	effectively.	The	increased	complexity	from	a	large	instruction	set	also	creates	more	room	for	unreliability	when	instructions	interact	in	unexpected	ways.	The	implementation	involves	integrated	circuit	design,	packaging,
power,	and	cooling.	Optimization	of	the	design	requires	familiarity	with	topics	from	compilers	and	operating	systems	to	logic	design	and	packaging.[17]	Main	article:	Instruction	set	architecture	This	section	does	not	cite	any	sources.	Please	help	improve	this	section	by	adding	citations	to	reliable	sources.	Unsourced	material	may	be	challenged	and
removed.	(March	2018)	(Learn	how	and	when	to	remove	this	message)	An	instruction	set	architecture	(ISA)	is	the	interface	between	the	computer's	software	and	hardware	and	also	can	be	viewed	as	the	programmer's	view	of	the	machine.	Computers	do	not	understand	high-level	programming	languages	such	as	Java,	C++,	or	most	programming
languages	used.	A	processor	only	understands	instructions	encoded	in	some	numerical	fashion,	usually	as	binary	numbers.	Software	tools,	such	as	compilers,	translate	those	high	level	languages	into	instructions	that	the	processor	can	understand.	Besides	instructions,	the	ISA	defines	items	in	the	computer	that	are	available	to	a	program—e.g.,	data
types,	registers,	addressing	modes,	and	memory.	Instructions	locate	these	available	items	with	register	indexes	(or	names)	and	memory	addressing	modes.	The	ISA	of	a	computer	is	usually	described	in	a	small	instruction	manual,	which	describes	how	the	instructions	are	encoded.	Also,	it	may	define	short	(vaguely)	mnemonic	names	for	the
instructions.	The	names	can	be	recognized	by	a	software	development	tool	called	an	assembler.	An	assembler	is	a	computer	program	that	translates	a	human-readable	form	of	the	ISA	into	a	computer-readable	form.	Disassemblers	are	also	widely	available,	usually	in	debuggers	and	software	programs	to	isolate	and	correct	malfunctions	in	binary
computer	programs.	ISAs	vary	in	quality	and	completeness.	A	good	ISA	compromises	between	programmer	convenience	(how	easy	the	code	is	to	understand),	size	of	the	code	(how	much	code	is	required	to	do	a	specific	action),	cost	of	the	computer	to	interpret	the	instructions	(more	complexity	means	more	hardware	needed	to	decode	and	execute	the
instructions),	and	speed	of	the	computer	(with	more	complex	decoding	hardware	comes	longer	decode	time).	Memory	organization	defines	how	instructions	interact	with	the	memory,	and	how	memory	interacts	with	itself.	During	design	emulation,	emulators	can	run	programs	written	in	a	proposed	instruction	set.	Modern	emulators	can	measure	size,
cost,	and	speed	to	determine	whether	a	particular	ISA	is	meeting	its	goals.	Main	article:	Microarchitecture	Computer	organization	helps	optimize	performance-based	products.	For	example,	software	engineers	need	to	know	the	processing	power	of	processors.	They	may	need	to	optimize	software	in	order	to	gain	the	most	performance	for	the	lowest
price.	This	can	require	quite	a	detailed	analysis	of	the	computer's	organization.	For	example,	in	an	SD	card,	the	designers	might	need	to	arrange	the	card	so	that	the	most	data	can	be	processed	in	the	fastest	possible	way.	Computer	organization	also	helps	plan	the	selection	of	a	processor	for	a	particular	project.	Multimedia	projects	may	need	very
rapid	data	access,	while	virtual	machines	may	need	fast	interrupts.	Sometimes	certain	tasks	need	additional	components	as	well.	For	example,	a	computer	capable	of	running	a	virtual	machine	needs	virtual	memory	hardware	so	that	the	memory	of	different	virtual	computers	can	be	kept	separated.	Computer	organization	and	features	also	affect
power	consumption	and	processor	cost.	Once	an	instruction	set	and	microarchitecture	have	been	designed,	a	practical	machine	must	be	developed.	This	design	process	is	called	the	implementation.	Implementation	is	usually	not	considered	architectural	design,	but	rather	hardware	design	engineering.	Implementation	can	be	further	broken	down	into
several	steps:	Logic	implementation	designs	the	circuits	required	at	a	logic-gate	level.	Circuit	implementation	does	transistor-level	designs	of	basic	elements	(e.g.,	gates,	multiplexers,	latches)	as	well	as	of	some	larger	blocks	(ALUs,	caches	etc.)	that	may	be	implemented	at	the	logic-gate	level,	or	even	at	the	physical	level	if	the	design	calls	for	it.
Physical	implementation	draws	physical	circuits.	The	different	circuit	components	are	placed	in	a	chip	floor	plan	or	on	a	board	and	the	wires	connecting	them	are	created.	Design	validation	tests	the	computer	as	a	whole	to	see	if	it	works	in	all	situations	and	all	timings.	Once	the	design	validation	process	starts,	the	design	at	the	logic	level	are	tested
using	logic	emulators.	However,	this	is	usually	too	slow	to	run	a	realistic	test.	So,	after	making	corrections	based	on	the	first	test,	prototypes	are	constructed	using	Field-Programmable	Gate-Arrays	(FPGAs).	Most	hobby	projects	stop	at	this	stage.	The	final	step	is	to	test	prototype	integrated	circuits,	which	may	require	several	redesigns.	For	CPUs,	the
entire	implementation	process	is	organized	differently	and	is	often	referred	to	as	CPU	design.	The	exact	form	of	a	computer	system	depends	on	the	constraints	and	goals.	Computer	architectures	usually	trade	off	standards,	power	versus	performance,	cost,	memory	capacity,	latency	(latency	is	the	amount	of	time	that	it	takes	for	information	from	one
node	to	travel	to	the	source)	and	throughput.	Sometimes	other	considerations,	such	as	features,	size,	weight,	reliability,	and	expandability	are	also	factors.	The	most	common	scheme	does	an	in-depth	power	analysis	and	figures	out	how	to	keep	power	consumption	low	while	maintaining	adequate	performance.	Modern	computer	performance	is	often
described	in	instructions	per	cycle	(IPC),	which	measures	the	efficiency	of	the	architecture	at	any	clock	frequency;	a	faster	IPC	rate	means	the	computer	is	faster.	Older	computers	had	IPC	counts	as	low	as	0.1	while	modern	processors	easily	reach	nearly	1.	Superscalar	processors	may	reach	three	to	five	IPC	by	executing	several	instructions	per	clock
cycle.[citation	needed]	Counting	machine-language	instructions	would	be	misleading	because	they	can	do	varying	amounts	of	work	in	different	ISAs.	The	"instruction"	in	the	standard	measurements	is	not	a	count	of	the	ISA's	machine-language	instructions,	but	a	unit	of	measurement,	usually	based	on	the	speed	of	the	VAX	computer	architecture.	Many
people	used	to	measure	a	computer's	speed	by	the	clock	rate	(usually	in	MHz	or	GHz).	This	refers	to	the	cycles	per	second	of	the	main	clock	of	the	CPU.	However,	this	metric	is	somewhat	misleading,	as	a	machine	with	a	higher	clock	rate	may	not	necessarily	have	greater	performance.	As	a	result,	manufacturers	have	moved	away	from	clock	speed	as
a	measure	of	performance.	Other	factors	influence	speed,	such	as	the	mix	of	functional	units,	bus	speeds,	available	memory,	and	the	type	and	order	of	instructions	in	the	programs.	There	are	two	main	types	of	speed:	latency	and	throughput.	Latency	is	the	time	between	the	start	of	a	process	and	its	completion.	Throughput	is	the	amount	of	work	done
per	unit	time.	Interrupt	latency	is	the	guaranteed	maximum	response	time	of	the	system	to	an	electronic	event	(like	when	the	disk	drive	finishes	moving	some	data).	Performance	is	affected	by	a	very	wide	range	of	design	choices	—	for	example,	pipelining	a	processor	usually	makes	latency	worse,	but	makes	throughput	better.	Computers	that	control
machinery	usually	need	low	interrupt	latencies.	These	computers	operate	in	a	real-time	environment	and	fail	if	an	operation	is	not	completed	in	a	specified	amount	of	time.	For	example,	computer-controlled	anti-lock	brakes	must	begin	braking	within	a	predictable	and	limited	time	period	after	the	brake	pedal	is	sensed	or	else	failure	of	the	brake	will
occur.	Benchmarking	takes	all	these	factors	into	account	by	measuring	the	time	a	computer	takes	to	run	through	a	series	of	test	programs.	Although	benchmarking	shows	strengths,	it	should	not	be	how	you	choose	a	computer.	Often	the	measured	machines	split	on	different	measures.	For	example,	one	system	might	handle	scientific	applications
quickly,	while	another	might	render	video	games	more	smoothly.	Furthermore,	designers	may	target	and	add	special	features	to	their	products,	through	hardware	or	software,	that	permit	a	specific	benchmark	to	execute	quickly	but	do	not	offer	similar	advantages	to	general	tasks.	Main	articles:	Low-power	electronics	and	Performance	per	watt	Power
efficiency	is	another	important	measurement	in	modern	computers.	Higher	power	efficiency	can	often	be	traded	for	lower	speed	or	higher	cost.	The	typical	measurement	when	referring	to	power	consumption	in	computer	architecture	is	MIPS/W	(millions	of	instructions	per	second	per	watt).	Modern	circuits	have	less	power	required	per	transistor	as
the	number	of	transistors	per	chip	grows.[18]	This	is	because	each	transistor	that	is	put	in	a	new	chip	requires	its	own	power	supply	and	requires	new	pathways	to	be	built	to	power	it.[clarification	needed]	However,	the	number	of	transistors	per	chip	is	starting	to	increase	at	a	slower	rate.	Therefore,	power	efficiency	is	starting	to	become	as
important,	if	not	more	important	than	fitting	more	and	more	transistors	into	a	single	chip.	Recent	processor	designs	have	shown	this	emphasis	as	they	put	more	focus	on	power	efficiency	rather	than	cramming	as	many	transistors	into	a	single	chip	as	possible.[19]	In	the	world	of	embedded	computers,	power	efficiency	has	long	been	an	important	goal
next	to	throughput	and	latency.	Increases	in	clock	frequency	have	grown	more	slowly	over	the	past	few	years,	compared	to	power	reduction	improvements.	This	has	been	driven	by	the	end	of	Moore's	Law	and	demand	for	longer	battery	life	and	reductions	in	size	for	mobile	technology.	This	change	in	focus	from	higher	clock	rates	to	power
consumption	and	miniaturization	can	be	shown	by	the	significant	reductions	in	power	consumption,	as	much	as	50%,	that	were	reported	by	Intel	in	their	release	of	the	Haswell	microarchitecture;	where	they	dropped	their	power	consumption	benchmark	from	30–40	watts	down	to	10–20	watts.[20]	Comparing	this	to	the	processing	speed	increase	of	3
GHz	to	4	GHz	(2002	to	2006),	it	can	be	seen	that	the	focus	in	research	and	development	is	shifting	away	from	clock	frequency	and	moving	towards	consuming	less	power	and	taking	up	less	space.[21]	Electronics	portal	Bit-serial	architecture	Comparison	of	CPU	architectures	Computer	hardware	CPU	design	Dataflow	architecture	Floating	point
Flynn's	taxonomy	Harvard	architecture	(Modified)	Influence	of	the	IBM	PC	on	the	personal	computer	market	Orthogonal	instruction	set	Reconfigurable	computing	Software	architecture	Transport	triggered	architecture	Von	Neumann	architecture	^	Dragoni,	Nicole	(n.d.).	"Introduction	to	peer	to	peer	computing"	(PDF).	DTU	Compute	–	Department	of
Applied	Mathematics	and	Computer	Science.	Lyngby,	Denmark.	^	Clements,	Alan.	Principles	of	Computer	Hardware	(Fourth	ed.).	p.	1.	Architecture	describes	the	internal	organization	of	a	computer	in	an	abstract	way;	that	is,	it	defines	the	capabilities	of	the	computer	and	its	programming	model.	You	can	have	two	computers	that	have	been
constructed	in	different	ways	with	different	technologies	but	with	the	same	architecture.	^	Hennessy,	John;	Patterson,	David.	Computer	Architecture:	A	Quantitative	Approach	(Fifth	ed.).	p.	11.	This	task	has	many	aspects,	including	instruction	set	design,	functional	organization,	logic	design,	and	implementation.	^	Williams,	F.	C.;	Kilburn,	T.	(25
September	1948),	"Electronic	Digital	Computers",	Nature,	162	(4117):	487,	Bibcode:1948Natur.162..487W,	doi:10.1038/162487a0,	S2CID	4110351	^	Susanne	Faber,	"Konrad	Zuses	Bemuehungen	um	die	Patentanmeldung	der	Z3",	2000	^	Neumann,	John	(1945).	First	Draft	of	a	Report	on	the	EDVAC.	p.	9.	^	Reproduced	in	B.	J.	Copeland	(Ed.),	"Alan
Turing's	Automatic	Computing	Engine",	Oxford	University	Press,	2005,	pp.	369-454.	^	Johnson,	Lyle	(1960).	"A	Description	of	Stretch"	(PDF).	p.	1.	Retrieved	7	October	2017.	^	Buchholz,	Werner	(1962).	Planning	a	Computer	System.	p.	5.	^	"System	360,	From	Computers	to	Computer	Systems".	IBM100.	7	March	2012.	Archived	from	the	original	on
April	3,	2012.	Retrieved	11	May	2017.	^	Hellige,	Hans	Dieter	(2004).	"Die	Genese	von	Wissenschaftskonzeptionen	der	Computerarchitektur:	Vom	"system	of	organs"	zum	Schichtmodell	des	Designraums".	Geschichten	der	Informatik:	Visionen,	Paradigmen,	Leitmotive.	pp.	411–472.	^	ACE	underwent	seven	paper	designs	in	one	year,	before	a	prototype
was	initiated	in	1948.	[B.	J.	Copeland	(Ed.),	"Alan	Turing's	Automatic	Computing	Engine",	OUP,	2005,	p.	57]	^	Schmalz,	M.S.	"Organization	of	Computer	Systems".	UF	CISE.	Retrieved	11	May	2017.	^	a	b	John	L.	Hennessy	and	David	A.	Patterson.	Computer	Architecture:	A	Quantitative	Approach	(Third	ed.).	Morgan	Kaufmann	Publishers.	^	Laplante,
Phillip	A.	(2001).	Dictionary	of	Computer	Science,	Engineering,	and	Technology.	CRC	Press.	pp.	94–95.	ISBN	0-8493-2691-5.	^	Null,	Linda	(2019).	The	Essentials	of	Computer	Organization	and	Architecture	(5th	ed.).	Burlington,	MA:	Jones	&	Bartlett	Learning.	p.	280.	ISBN	9781284123036.	^	Martin,	Milo.	"What	is	computer	architecture?"	(PDF).
UPENN.	Retrieved	11	May	2017.	^	"Integrated	circuits	and	fabrication"	(PDF).	Retrieved	8	May	2017.	^	"Exynos	9	Series	(8895)".	Samsung.	Retrieved	8	May	2017.	^	"Measuring	Processor	Power	TDP	vs	ACP"	(PDF).	Intel.	April	2011.	Retrieved	5	May	2017.	^	"History	of	Processor	Performance"	(PDF).	cs.columbia.edu.	24	April	2012.	Retrieved	5
May	2017.	John	L.	Hennessy	and	David	Patterson	(2006).	Computer	Architecture:	A	Quantitative	Approach	(Fourth	ed.).	Morgan	Kaufmann.	ISBN	978-0-12-370490-0.	Barton,	Robert	S.,	"Functional	Design	of	Computers",	Communications	of	the	ACM	4(9):	405	(1961).	Barton,	Robert	S.,	"A	New	Approach	to	the	Functional	Design	of	a	Digital
Computer",	Proceedings	of	the	Western	Joint	Computer	Conference,	May	1961,	pp.	393–396.	About	the	design	of	the	Burroughs	B5000	computer.	Bell,	C.	Gordon;	and	Newell,	Allen	(1971).	"Computer	Structures:	Readings	and	Examples",	McGraw-Hill.	Blaauw,	G.A.,	and	Brooks,	F.P.,	Jr.,	"The	Structure	of	System/360,	Part	I-Outline	of	the	Logical
Structure",	IBM	Systems	Journal,	vol.	3,	no.	2,	pp.	119–135,	1964.	Tanenbaum,	Andrew	S.	(1979).	Structured	Computer	Organization.	Englewood	Cliffs,	New	Jersey:	Prentice-Hall.	ISBN	0-13-148521-0.	Wikimedia	Commons	has	media	related	to	Computer	architecture.	Carnegie	Mellon	Computer	Architecture	Lectures	ISCA:	Proceedings	of	the
International	Symposium	on	Computer	Architecture	Micro:	IEEE/ACM	International	Symposium	on	Microarchitecture	HPCA:	International	Symposium	on	High	Performance	Computer	Architecture	ASPLOS:	International	Conference	on	Architectural	Support	for	Programming	Languages	and	Operating	Systems	ACM	Transactions	on	Architecture	and
Code	Optimization	IEEE	Transactions	on	Computers	The	von	Neumann	Architecture	of	Computer	Systems	at	the	Wayback	Machine	(archived	2017-10-31)	Retrieved	from	"	Title	Computer	Architecture	and	Organization	Author	John	Patrick	Hayes	Language	English	ISBN	0071159975	/	9780071159975	Pages	604	File	Size	27.7	MB	Total	Downloads
2,950	Total	Views	20,867	Pages	In	File	628	Identifier	0071159975,9780071159975	Org	File	Size	28,996,988	Extension	pdf	Download	Computer	Architecture	and	Organization	PDF	The	third	edition	of	Computer	Architecture	and	Organization	features	a	comprehensive	updating	of	the	material-especially	case	studies,	worked	examples,	and	problem
sets-while	retaining	the	book's	time-proven	emphasis	on	basic	prinicples.	Reflecting	the	dramatic	changes	in	computer	technology	that	have	taken	place	over	the	last	decade,	the	treatment	of	performance-related	topics	such	as	pipelines,	caches,	and	RISC's	has	been	expanded.	Many	examples	and	end-of-chapter	problems	have	also	been	added....
Share	—	copy	and	redistribute	the	material	in	any	medium	or	format	for	any	purpose,	even	commercially.	Adapt	—	remix,	transform,	and	build	upon	the	material	for	any	purpose,	even	commercially.	The	licensor	cannot	revoke	these	freedoms	as	long	as	you	follow	the	license	terms.	Attribution	—	You	must	give	appropriate	credit	,	provide	a	link	to	the
license,	and	indicate	if	changes	were	made	.	You	may	do	so	in	any	reasonable	manner,	but	not	in	any	way	that	suggests	the	licensor	endorses	you	or	your	use.	ShareAlike	—	If	you	remix,	transform,	or	build	upon	the	material,	you	must	distribute	your	contributions	under	the	same	license	as	the	original.	No	additional	restrictions	—	You	may	not	apply
legal	terms	or	technological	measures	that	legally	restrict	others	from	doing	anything	the	license	permits.	You	do	not	have	to	comply	with	the	license	for	elements	of	the	material	in	the	public	domain	or	where	your	use	is	permitted	by	an	applicable	exception	or	limitation	.	No	warranties	are	given.	The	license	may	not	give	you	all	of	the	permissions
necessary	for	your	intended	use.	For	example,	other	rights	such	as	publicity,	privacy,	or	moral	rights	may	limit	how	you	use	the	material.	Computer	architecture	and	organisation	1.	2.	3.	4.	Computer	architecture	and	organisation	Table	of	Contents	Preface	Index	Computer	architecture	and	organisation	Hayes,	John	P.	(John	Patrick),	1944-	This	book
was	produced	in	EPUB	format	by	the	Internet	Archive.	The	book	pages	were	scanned	and	converted	to	EPUB	format	automatically.	This	process	relies	on	optical	character	recognition,	and	is	somewhat	susceptible	to	errors.	The	book	may	not	offer	the	correct	reading	sequence,	and	there	may	be	weird	characters,	non-words,	and	incorrect	guesses	at
structure.	Some	page	numbers	and	headers	or	footers	may	remain	from	the	scanned	page.	The	process	which	identifies	images	might	have	found	stray	marks	on	the	page	which	are	not	actually	images	from	the	book.	The	hidden	page	numbering	which	may	be	available	to	your	ereader	corresponds	to	the	numbered	pages	in	the	print	edition,	but	is	not
an	exact	match;	page	numbers	will	increment	at	the	same	rate	as	the	corresponding	print	edition,	but	we	may	have	started	numbering	before	the	print	book's	visible	page	numbers.	The	Internet	Archive	is	working	to	improve	the	scanning	process	and	resulting	books,	but	in	the	meantime,	we	hope	that	this	book	will	be	useful	to	you.	The	Internet
Archive	was	founded	in	1996	to	build	an	Internet	library	and	to	promote	universal	access	to	all	knowledge.	The	Archive's	purposes	include	offering	permanent	access	for	researchers,	historians,	scholars,	people	with	disabilities,	and	the	general	public	to	historical	collections	that	exist	in	digital	format.	The	Internet	Archive	includes	texts,	audio,
moving	images,	and	software	as	well	as	archived	web	pages,	and	provides	specialized	services	for	information	access	for	the	blind	and	other	persons	with	disabilities.	Created	with	abbyy2epub	(v.1.7.0)	Computer	Architecture	andOrganization	in	McGRAW-HILL	INTERNATIONAL	EDIT!	Computer	Science	Seri	Computer	Architecture	and	Organization
McGraw-Hill	Series	in	Computer	Science	SENIOR	CONSULTING	EDITOR	C.L.	Liu,	University	of	Illinois	at	Urbana-Champaign	CONSULTING	EDITOR	Allen	B.	Tucker,	Bowdoin	College	Fundamentals	of	Computing	and	Programming	Computer	Organization	and	Architecture	Computers	in	Society/Ethics	Systems	and	Languages	Theoretical	Foundations
Software	Engineering	and	Database	Artificial	Intelligence	Networks,	Parallel	and	Distributed	Computing	Graphics	and	Visualization	The	MIT	Electrical	and	Computer	Science	Series	McGraw-Hill	Series	in	Computer	Organization	and	Architecture	Bell	and	Newell:	Computer	Structures:	Readings	and	Examples	Cavanagh:	Digital	Computer	Arithmetic:
Design	and	Implementation	Feldman	and	Retter:	Computer	Architecture	and	Logic	Design	Gear:	Computer	Organization	and	Programming:	With	an	Emphasis	on	Personal	Computers	Hamacher,	Vranesic,	and	Zaky:	Computer	Organization	Hayes:	Computer	Architecture	and	Organization	Hayes:	Digital	System	Design	and	Microprocessors	Horvath:
Introduction	to	Microprocessors	Using	the	MC6809	or	the	MC68000	Hwang:	Scalable	Parallel	and	Cluster	Computing:	Architecture	and	Programming	Hwang	and	Briggs:	Computer	Architecture	and	Parallel	Processing	Lawrence	and	Mauch:	Real-Time	Microcomputer	System	Design	Siweiorek,	Bell	and	Newell:	Computer	Structures:	Principles	&
Examples	Stone:	Introduction	to	Computer	Organization	and	Data	Structures	Stone	and	Siewiorek:	Introduction	to	Computer	Organization	and	Data	Structures:PDP-11	Edition	Ward	and	Halstead:	Computational	Structures	McGraw-Hill	Series	in	Computer	Engineering	SENIOR	CONSULTING	EDITORS	Stephen	W.	Director,	University	of	Michigan,
Ann	Arbor	C.L.	Liu,	University	of	Illinois,	Urbana-Champaign	Bartee:	Computer	Architecture	and	Logic	Design	Bose,	Liang:	Neural	Network	Fundamentals	with	Graphs,	Algorithms,	and	Applications	Chang	and	Sze:	ULSI	Technology	De	Micheli:	Synthesis	and	Optimization	of	Digital	Circuits	Feldman	and	Retter:	Computer	Architecture:	A	Designer's
Text	Based	on	a	Generic	RISC	Hamacher,	Vranesic,	and	Zaky:	Computer	Organization	Hayes:	Computer	Architecture	and	Organization	Horvath:	Introduction	to	Microprocessors	Using	the	MC6809	or	the	MC68000	Hwang:	Advanced	Computer	Architecture:	Parallelism,	Scalability,	Programmability	Hwang:	Scalable	Parallel	and	Cluster	Computing:
Architecture	and	Programming	Kang	and	Leblebici:	CMOS	Digital	Integrated	Circuits:	Analysis	and	Design	Kohavi:	Switching	and	Finite	Automata	Theory	Krishna	and	Shin:	Real-Time	Systems	Lawrence-Mauch:	Real-Time	Microcomputer	System	Design:	An	Introduction	Levine:	Vision	in	Man	and	Machine	Navabi:	VHDL:	Analysis	and	Modeling	of
Digital	Systems	Peatman:	Design	with	Microcontrollers	Peatman:	Digital	Hardware	Design	Rosen:	Discrete	Mathematics	and	Its	Applications	Ross:	Fuzzy	Logic	with	Engineering	Applications	Sandige:	Modern	Digital	Design	Sarrafzadeh	and	Wong:	An	Introduction	to	VLSI	Physical	Design	Schalkoff:	Artificial	Neural	Networks	Stadler:	Analytical
Robotics	and	Mechatronics	Sze:	VLSI	Technology	Taub:	Digital	Circuits	and	Microprocessors	Wear,	Pinkert,	Wear,	and	Lane:	Computers:	An	Introduction	to	Hardware	and	Software	Design	ABOUT	THE	AUTHOR	JOHN	P.	HAYES	is	a	professor	in	the	electrical	engineering	and	computer	sciencedepartment	at	the	University	of	Michigan,	where	he	was
the	founding	director	of	theAdvanced	Computer	Architecture	Laboratory.	He	teaches	and	conducts	research	inthe	areas	of	computer	architecture;	computer-aided	design,	verification,	and	testing;VLSI	design;	and	fault-tolerant	systems.	Dr.	Hayes	is	the	author	of	two	patents,more	than	150	technical	papers,	and	five	books,	including	Layout
Minimization	forCMOS	Cells	(Kluwer,	1992,	coauthored	with	R.	L.	Maziasz)	and	Introduction	toDigital	Logic	Design	(Addison-Wesley,	1993).	He	has	served	as	editor	of	variousjournals,	including	the	IEEE	Transactions	on	Parallel	and	Distributed	Systems	andthe	Journal	of	Electronic	Testing,	and	was	technical	program	chairman	of	the
1991International	Computer	Architecture	Symposium,	Toronto.	Dr.	Hayes	received	his	undergraduate	degree	from	the	National	University	of	Ire-land,	Dublin,	and	his	M.S.	and	Ph.D.	degrees	in	electrical	engineering	from	the	Uni-versity	of	Illinois,	Urbana-Champaign.	Prior	to	joining	the	University	of	Michigan,he	was	a	faculty	member	at	the
University	of	Southern	California.	Dr.	Hayes	hasalso	held	visiting	positions	at	various	academic	and	industrial	organizations,	includ-ing	Stanford	University,	McGill	University,	Universite	de	Montreal,	and	Logic-Vision	Inc.	He	is	a	fellow	of	the	Institute	of	Electrical	and	Electronics	Engineersand	a	member	of	the	Association	for	Computing	Machinery
and	Sigma	Xi.	To	My	FatherPatrick	J.	Hayes(1910-1968)In	Memoriam	CONTENTS	Preface	xiii	Computing	and	Computers	1	1.1	The	Nature	of	Computing	11.1.1	The	Elements	of	Computers	/	1.1.2	Limitations	of	Computers	1.2	The	Evolution	Of	Computers	127.2.7	The	Mechanical	Era	/	1.2.2	Electronic	Computers	/	1.2.3	The	Later	Generations	1.3	The
VLSI	Era	35	1.3.1	Integrated	Circuits	/	1.3.2	Processor	Architecture	/1.3.3	System	Architecture	1.4	Summary	56	1.5	Problems	57	1.6	References	62	Des	ign	Methodology	64	System	Design	2.1	2.7.7	System	Representation	/	2.1.2	Design	Process	/	64	2.1.3	The	Gate	Level	The	Register	Level	2.2	2.2.7	Register-Level	Components	/	2.2.2	Programmable	83
Logic	Devices	/	2.2.3	Register-Level	Design	The	Processor	Level	2.3	2.3.1	Processor-Level	Components	/	2.3.2	Processor-Level	114	Design	2.4	Summary	126	2.5	Problems	127	2.6	References	136	Processor	Basics	137	3.1	CPU	Organization	137	i.7.7	Fundamentals	/	3.1.2	Additional	Features	x	3.2	Data	Representation	160	Contents	3.2.1	Basic	Formats
/	3.2.2	Fixed-Point	Numbers	/	3.2.3	Floating-Point	Numbers	3.3	Instruction	Sets	t	1783.3.1	Instruction	Formats	/	3.3.2	Instruction	Types	/	3.3.3	Programming	Considerations	3.4	Summary	211	3.5	Problems	212	3.6	References	221	4	Datapath	Design	223	4.1	Fixed-Point	Arithmetic	2234.1.1	Addition	and	Subtraction	/	4.1.2	Multiplication	/	4.1.3	Division
4.2	Arithmetic-Logic	Units	2524.2.1	Combinational	ALUs	/	4.2.2	Sequential	ALUs	4.3	Advanced	Topics	2664.3.1	Floating-Point	Arithmetic	/	4.3.2	Pipeline	Processing	4.4	Summary	292	4.5	Problems	293	4.6	References	301	5	Control	Design	303	5.1	Basic	Concepts	3035.7.7	Introduction	/	5.1.2	Hardwired	Control	/	5.1.3	Design	Examples	5.2
Microprogrammed	Control	3325.2.7	Basic	Concepts	/	5.2.2	Multiplier	Control	Unit	/	5.2.3	CPU	Control	Unit	5.3	Pipeline	Control	3645.3.1	Instruction	Pipelines	/	5.3.2	Pipeline	Performance	/	5.3.3	Superscalar	Processing	5.4	Summary	390	5.5	Problems	392	5.6	References	399	6	Memory	Organization	400	6.1	Memory	Technology	400	6.7.7	Memory
Device	Characteristics	/	6.1.2	Random-Access	Memories	/	6.1.3	Serial-Access	Memories	6.2	Memory	Systems	6.2.1	Multilevel	Memories	/	6.2.2	Address	Translation	/	426	xi	Contents	6.2.3	Memory	Allocation	6.3	Caches	6.3.1	Main	Features	/	6.3.2	Address	6.3.3	Structure	versus	Performance	452	Mapping	/	6.4	Summary	471	6.5	Problems	472	6.6
References	478	Sysl	em	Organization	480	7.1	Communication	Methods	480	7.1.1	Basic	Concepts	/	7.1.2	Bus	Control	7.2	10	And	System	Control	5047.2.7	Programmed	10	/	7.2.2	DMA	and	Interrupts	/	7.2.310	Processors	/	7.2.4	Operating	Systems	7.3	Parallel	Processing	5397.3.1	Processor-Level	Parallelism	/	7.3.2	Multiprocessors	/7.3.3	Fault	Tolerance
7.4	Summary	578	7.5	Problems	579	7.6	References	587	Index	589	PREFACE	This	book	is	about	the	design	of	computers;	it	covers	both	their	overall	design,	orarchitecture,	and	their	internal	details,	or	organization.	It	aims	to	provide	a	comprehensive	and	self-contained	view	of	computer	design	at	an	introductory	level,	pri-marily	from	a	hardware
viewpoint.	The	third	edition	of	Computer	Architecture	andOrganization	is	intended	as	a	text	for	computer	science,	computer	engineering,	andelectrical	engineering	courses	at	the	undergraduate	or	beginning	graduate	levels;	itshould	also	be	useful	for	self-study.	This	text	assumes	little	in	the	way	of	prerequi-sites	beyond	some	familiarity	with
computer	programming,	binary	numbers,	anddigital	logic.	Like	the	previous	editions,	the	book	focuses	on	basic	principles	buthas	been	thoroughly	updated	and	has	substantially	more	coverage	of	performance-related	issues.	The	book	is	divided	into	seven	chapters.	Chapter	1	discusses	the	nature	and	lim-itations	of	computation.	This	chapter	surveys
the	historical	evolution	of	computerdesign	to	introduce	and	motivate	the	key	ideas	encountered	later.	Chapter	2	dealswith	computer	design	methodology	and	examines	the	two	major	computer	designlevels,	the	register	(or	register	transfer)	and	processor	levels,	in	detail.	It	alsoreviews	gate-level	logic	design	and	discusses	computer-aided	design	(CAD)
andperformance	evaluation	methods.	Chapter	3	describes	the	central	processing	unit(CPU),	or	microprocessor	that	lies	at	the	heart	of	every	computer,	focusing	oninstruction	set	design	and	data	representation.	The	next	two	chapters	address	CPUdesign	issues:	Chapter	4	covers	the	data-processing	part,	or	datapath,	of	a	proces-sor,	while	Chapter	5
deals	with	control-unit	design.	The	principles	of	arithmetic-logic	unit	(ALU)	design	for	both	fixed-point	and	floating-point	operations	arecovered	in	Chapter	4.	Both	hardwired	and	microprogrammed	control	are	examinedin	Chapter	5,	along	with	the	design	of	pipelined	and	superscalar	processors.	Chap-ter	6	deals	with	a	computer's	memory	subsystem;
the	chapter	discusses	the	princi-pal	memory	technologies	and	their	characteristics	from	a	hierarchical	viewpoint,with	emphasis	on	cache	memories.	Finally,	Chapter	7	addresses	the	overall	organi-zation	of	a	computer	system,	including	inter-	and	intrasystem	communication,input-output	(10)	systems,	and	parallel	processing	to	achieve	very	high
perfor-mance	and	reliability.	Various	representative	computer	systems,	such	as	von	Neu-mann's	classic	IAS	computer,	the	ARM	RISC	microprocessor,	the	Intel	Pentium,the	Motorola	PowerPC,	the	MIPS	RXOOO,	and	the	Tandem	NonStop	fault-tolerantmultiprocessor,	appear	as	examples	throughout	the	book.	The	book	has	been	in	use	for	many	years	at
universities	around	the	world.	It	con-tains	more	than	sufficient	material	for	a	typical	one-semester	(15	week)	course,allowing	the	instructor	some	leeway	in	choosing	the	topics	to	emphasize.	Much	ofthe	background	material	in	Chapter	1	and	the	first	part	of	Chapter	2	can	be	left	as	areading	assignment,	or	omitted	if	the	students	are	suitably	prepared.
The	moreadvanced	material	in	Chapter	7	can	be	covered	briefly	or	skipped	if	desired	withoutloss	of	continuity.	The	Instructor's	Manual	contains	some	representative	courseoutlines.	This	edition	updates	the	contents	of	the	previous	edition	and	responds	to	thesuggestions	of	its	users	while	retaining	the	book's	time-proven	emphasis.on	basic	Preface
concepts.	The	third	edition	is	somewhat	shorter	than	its	predecessors,	and	thematerial	is	more	accessible	to	readers	who	are	less	familiar	with	computers.	Everysection	has	been	rewritten	to	reflect	the	dramatic	changes	that	have	occurred	in	thecomputer	industry	over	the	last	decade.	The	main	structural	changes	are	the	reor-ganization	of	the	two
old	chapters	on	processor	design	and	control	design	intothree	chapters:	the	new	Chapters	3,	4,	and	5;	and	the	consolidation	of	the	two	oldchapters	on	system	organization	and	parallel	processing	in	the	new	Chapter	7.	Thetreatment	of	performance-related	topics	such	as	pipeline	control,	cache	design,	andsuperscalar	architecture	has	been	expanded.
Topics	that	receive	less	space	in	thisedition	include	gate-level	design,	microprogramming,	operating	systems,	and	vec-tor	processing.	The	third	edition	also	includes	many	new	examples	(case	studies)and	end-of-chapter	problems.	There	are	now	more	than	300	problems,	about	80percent	of	which	are	new	to	this	edition.	Course	instructors	can	obtain
an	Instruc-tor's	Manual,	which	contains	solutions	to	all	the	problems,	directly	from	the	pub-lisher.	The	specific	changes	made	in	the	third	edition	are	as	follows:	The	historicalmaterial	in	Chapter	1	has	been	streamlined	and	brought	up	to	date.	Gate-leveldesign	has	been	de-emphasized	in	Chapter	2,	while	the	discussion	of	performanceevaluation	has
been	expanded.	A	new	section	on	programmable	logic	devices(PLDs)	has	been	added,	and	the	role	of	computer-aided	design	(CAD)	has	beenstressed.	The	old	third	chapter	(on	processor	design)	has	been	split	into	Chapter	3,"Processor	Basics,"	and	Chapter	4,	"Datapath	Design."	Chapter	3	contains	anexpanded	treatment	of	RISC	and	CISC	CPUs	and
their	instruction	sets.	It	intro-duces	the	ARM	and	MIPS	RX000	microprocessor	series	as	major	examples;	theMotorola	680X0	series	continues	to	be	used	as	an	example,	however.	The	materialon	computer	arithmetic	and	ALU	design	now	appears	in	Chapter	4.	The	old	chapteron	control	design,	which	is	now	Chapter	5,	has	been	completely	revised	with
amore	practical	treatment	of	hardwired	control	and	a	briefer	treatment	of	micropro-gramming.	A	new	section	on	pipeline	control	includes	some	material	from	the	oldChapter	7,	as	well	as	new	material	on	superscalar	processing.	Chapter	6	presents	anupdated	treatment	of	the	old	fifth	chapter	on	memory	organization.	Chapter	6	con-tinues	to	present	a
systematic,	hierarchical	view	of	computer	memories	but	has	agreatly	expanded	treatment	of	cache	memories.	Chapter	7,	"System	Organization,"merges	material	from	the	old	sixth	and	seventh	chapters.	The	sections	on	operatingsystems	and	parallel	processing	have	been	shortened	and	modernized.	The	material	for	this	book	has	been	developed
primarily	for	courses	on	computerarchitecture	and	organization	that	I	have	taught	over	the	years,	initially	at	the	Uni-versity	of	Southern	California	and	later	at	the	University	of	Michigan.	I	am	gratefulto	my	colleagues	and	students	at	these	and	other	schools	for	their	many	helpfulcomments	and	suggestions.	As	always,	I	owe	a	special	thanks	to	my	wife
Terrie	for	proofreading	assistance,as	well	as	her	never-failing	support	and	love.	John	P.	Hayes	CHAPTER	1	Computing	and	Computers	This	chapter	provides	a	broad	overview	of	digital	computers	while	introducingmany	of	the	concepts	that	are	covered	in	depth	later.	It	first	examines	the	natureand	limitations	of	the	computing	process.	Then	it	briefly
traces	the	historical	devel-opment	of	computing	machines	and	ends	with	a	discussion	of	contemporary	VLSI-based	computer	systems.	1.1	THE	NATURE	OF	COMPUTING	Throughout	history	humans	have	relied	mainly	on	their	brains	to	perform	calcula-tions;	in	other	words,	they	were	the	computers	[Boyer	1989].	As	civilizationadvanced,	a	variety	of
computing	tools	were	invented	that	aided,	but	did	notreplace,	manual	computation.	The	earliest	peoples	used	their	fingers,	pebbles,	ortally	sticks	for	counting	purposes.	The	Latin	words	digitus	meaning	"finger"	andcalculus	meaning	"pebble"	have	given	us	digital	and	calculate	and	indicate	theancient	origins	of	these	computing	concepts.	Two	early
computational	aids	that	were	widely	used	until	quite	recently	are	theabacus	and	the	slide	rule,	both	of	which	are	illustrated	in	Figure	1.1.	The	abacushas	columns	of	pebblelike	beads	mounted	on	rods.	The	beads	are	moved	by	hand	topositions	that	represent	numbers.	Manipulating	the	beads	according	to	certain	sim-ple	rules	enables	people	to	count,
add,	and	perform	the	other	basic	operations	ofarithmetic.	The	slide	rule,	on	the	other	hand,	represents	numbers	by	lengths	markedon	rulerlike	scales	that	can	be	moved	relative	to	one	another.	By	adding	a	length	aon	a	fixed	scale	to	a	length	b	on	a	second,	sliding	scale,	their	combined	length	c	=a	+	b	can	be	read	off	the	fixed	scale.	The	slide	rule's
main	scales	are	logarithmic,so	that	the	process	of	adding	two	lengths	on	these	scales	effectively	multiplies	two	SECTION	1.1The	Nature	ofComputing	B	=	2.30	I	•	l	t	•	11	•	■	11	r	i	■	■	|	■	111111	<	11111111	i|iiii|ini|iiil|iiii|i	T-m1""""!	|iiii|iiii|iiii|iiii|im|iiH|nii^™iiiiiiii|	[in	Llllllli	mill.U	l,l,lll,lil7,,il,,.il,l„l.„,L,l,,l,l,iiil„„l	r	'	■:	■	i	I'irl	I'l'lTi'l""!	'"l""	8	9	1	2	'
i*	*	19	8	7	6	01	ll	lll|llll|llll|lltl|llll|IIIip	1	4	5	6	7Li.l.l.l.l.l.l.llNllllMl	.I....I	i,	„l	,1	Ill	Fri'i'i'i'i'H'ri'H	i|ini|iiii|iiii|i|i|	67891	2	V*	4	S	6	7	8	9	I	ll	rilllillllllllll7	J.,..l....i.,.,l	l,..,l...,l...,l....l,...l....l..„l..,,T.I.	I.I	.1	.1.	t.l.l	,1	.l,l,l.l.l.l,s	Program	Addre	controlunit	PCU
Instructiondecoder	—*■	Control77T	signals	0	\£}	M(0)	1	AR	|	1	Mil)	2	M(2)	3	Mi?i	4	M(4)	5	M(5)	*■	1	1	'	IBR	L_pc	1	,	I	Dataprocessing	1!	°	unit	DPL	ii	Arithmetic-logic	unit	'	4,093	M.4,093)	4,094	M(4,094)	M(4,095)	4,095	AC	T	■	r	+	i	—	[MQ	Mainmemory	M	Legend	Program	control	unit	PCUAR:	Memory	address	registerIR:	Instrucuon	opcode
registerIBR:	Next-	instruction	buffer	registerPC:	Program	counter	Data	processing	unit	DPI!AC:	Accumulator	registerDR:	General-purpose	data	registerMQ:	Multiplier-	quotient	register	Figure	1.12	Organization	of	the	CPU	and	main	memory	of	the	IAS	computer.	21	CHAPTER	1Computing	andComputers	an	instruction	of	the	form	ADD	X	(1.7)	fetches
the	contents	of	the	memory	location	X	from	main	memory	and	adds	it	tothe	contents	of	a	CPU	register	known	as	the	accumulator	register	AC.	Theresulting	sum	is	then	placed	in	AC.	Hence	X	and	AC	play	the	role	of	the	threememory	addresses	A,,	A2,	and	A3	appearing	in	(1.6).2.	A	program's	instructions	are	stored	in	M	in	approximately	the	sequence
inwhich	they	are	executed.	Hence	the	address	of	the	next	instruction	word	is	usu-ally	that	of	the	current	instruction	plus	one.	Therefore,	the	EDVAC's	next-instruction	address	A4	can	be	replaced	by	a	CPU	register	(the	program	counterPC),	which	stores	the	address	of	the	current	instruction	word	and	is	incrementedby	one	when	the	CPU	needs	a	new
instruction	word.	Branch	instructions	areprovided	to	permit	the	instruction	execution	sequence	to	be	varied.	Figure	1.12	gives	a	programmer's	perspective	of	the	IAS,	using	modern	nota-tion	and	terminology.	One	of	the	two	main	parts	of	the	CPU	is	responsible	forfetching	instructions	from	main	memory	and	interpreting	them;	this	part	is	vari-ously
known	as	the	program	control	unit	(PCU)	or	the	I-unit	(instruction	unit).	Thesecond	major	part	of	the	CPU	is	responsible	for	executing	instructions	and	isknown	as	the	data	processing	unit	(DPU),	the	datapath,	or	the	E-unit	(executionunit).	The	major	components	of	the	PCU	are	the	instruction	register	IR,	which	storesthe	opcode	that	is	currently	being
executed,	and	the	program	counter	PCwhichautomatically	stores	and	keeps	track	of	the	address	of	the	next	instruction	to	be	22	SECTION	1.2The	Evolution	ofComputers	fetched.	The	PCU	has	circuits	to	interpret	opcodes	and	to	issue	control	signals	tothe	DPU,	M,	and	other	circuits	involved	in	executing	instructions.	The	PCU	canmodify	the	instruction
execution	sequence	when	required	to	do	so	by	branchinstructions.	There	is	also	a	12-bit	address	register	AR	in	the	PCU	that	holds	theaddress	of	a	data	operand	to	be	fetched	from	or	sent	fo	main	memory.	Because	theIAS	has	the	unusual	feature	of	fetching	two	instructions	at	a	time	from	M,	it	con-tains	a	second	register,	the	instruction	buffer	register
(IBR),	for	holding	a	secondinstruction.	The	main	components	of	the	DPU	are	the	ALU,	which	contains	the	circuitsthat	perform	addition,	multiplication,	etc.,	as	required	by	the	possible	opcodes,	andseveral	data	registers	to	store	data	words	temporarily	during	program	execution.The	IAS	has	two	general-purpose	40-bit	data	registers:	AC	(accumulator)
and	DR(data	register).	It	also	has	a	third,	special-purpose	data	register	MQ	(multiplier-quotient)	intended	for	use	by	multiply	and	divide	instructions.	Main	memory	M	is	a	4096	word	or	4096	x	40-bit	array	of	storage	cells.	Eachstorage	location	in	M	is	associated	with	a	unique	12-bit	number	called	its	address,which	the	CPU	uses	to	refer	to	that
location.	To	read	data	from	a	particular	mem-ory	location,	the	CPU	must	have	its	address	X	(which	it	can	store	in	PC	or	AR).The	CPU	accomplishes	the	read	operation	by	sending	the	address	X	to	M	accompa-nied	by	control	signals	that	specify	"read."	M	responds	by	transferring	a	copy	ofM(X),	the	word	stored	at	address	X,	to	the	CPU,	where	it	is
loaded	into	DR.	In	asimilar	way	the	CPU	writes	new	data	into	main	memory	by	sending	to	M	the	desti-nation	address	X,	a	data	word	D	to	be	stored,	and	control	signals	that	specify"write."	Instruction	set.	The	IAS	machine	had	around	30	types	of	instructions.	Thesewere	chosen	to	provide	a	balance	between	application	needs—the	machine's	focuswas
on	numerical	computation	for	scientific	applications—and	computer	hardwarecosts	as	they	existed	at	the	time.	To	represent	instructions,	we	will	use	a	notationcalled	a	hardware	description	language	(HDL)	or	register-transfer	language(RTL)	that	approximates	the	assembly	language	used	to	prepare	programs	for	thecomputer;	the	designers	of	the	IAS
computer	also	used	such	a	descriptive	language[Burks,	Goldstine,	and	von	Neumann	1946].	The	HDL	introduced	here	and	usedthroughout	this	book	is	largely	self-explanatory.	Storage	locations	in	M	or	the	CPUare	referred	to	by	acronym.	The	transfer	of	information	is	denoted	by	the	assign-ment	symbol	:=,	which	suggests	the	left-going	arrow	is	used
to	store	acounting	variable	N	and	is	initially	set	to	999.	N	is	systematically	decremented	by	oneafter	each	addition	step:	when	it	reaches	-1,	the	program	halts.	The	conditional	branchinstruction	in	5R	performs	this	termination	test.	The	three	instructions	in	locations	3L.3R.	and	4L	are	the	key	ones	that	implement	(1.8).	The	address-modify	instructions
in8L.	9L.	and	10L	decrement	the	address	parts	of	the	three	instructions	in	3L.-3R.	and	zo	Location	Instruction	or	data	Comment	SECTION	1.2The	Evolution	of	0	999	Constant	(count	N).	Computers	1	1	2	1000	Constant.	3L	AC	:=	M(2000)	Load	A(I)	into	AC.	3R	AC	:=	AC	+	M(3000)	Compute	A(I)	+	B(I).	4L	M(4000)	:=	AC	Store	sum	C(I).	4R	AC	:=	M(0)
Load	count	N	into	AC.	5L	AC:=AC-M(1)	Decrement	count	N	by	one.	5R	if	AC	>	0	then	go	to	M(6,	20:39)	Test	N	and	branch	to	6R	if	nonnegative.	6L	gotoM(6,	0:19)	Halt.	6R	M(0)	:=	AC	Update	count	N.	7L	AC	:=	AC	+	Mf	1)	Increment	AC	by	one.	7R	AC	:=	AC	+	M(2)	Modify	address	in	3L.	8L	M(3.	8:19):=AC(28:39)	8R	AC	:=	AC	+	M(2)	9L	M(3,	28:39)
:=AC(28:39)	9R	AC	:=	AC	+	M(2)	10L	M(4,	8:19):=AC(28:39)	10R	gotoM(3,0:19)	Constant.	•	Modify	address	in	3R.	Modify	address	in	4L.	Branch	to	3L.	Figure	1.15	An	IAS	program	for	vector	addition.	4L,	respectively.	Thus	the	program	continuously	modifies	itself	during	execution.	Fig-ure	1.15	shows	the	program	before	execution	commences.	At	the
end	of	the	computation,	the	first	three	instructions	will	have	changed	to	the	following:	3L	AC:=M(1001)	3R	AC:=AC	+	M(2001)	4L	M(3001):=AC	Critique.	In	the	years	that	have	elapsed	since	the	IAS	computer	was	com-pleted,	numerous	improvements	in	computer	design	have	appeared.	Hindsightenables	us	to	point	out	some	of	the	IAS's
shortcomings.	1.	The	program	self-modification	process	illustrated	in	the	preceding	example	fordecrementing	the	index	I	is	inefficient.	In	general,	writing	and	debugging	a	pro-gram	whose	instructions	change	themselves	is	difficult	and	error-prone.	Further,before	every	execution	of	the	program,	the	original	version	must	be	reloadedinto	M.	Later
computers	employ	special	instruction	types	and	registers	for	indexcontrol,	which	eliminates	the	need	for	address-modify	instructions.	2.	The	small	amount	of	storage	space	in	the	CPU	results	in	a	great	deal	of	unpro-ductive	data-transfer	traffic	between	the	CPU	and	main	memory	M;	it	also	addsto	program	length.	Later	computers	have	more	CPU
registers	and	a	specialmemory	called	a	cache	that	acts	as	a	buffer	between	the	CPU	register?	and	M.	3.	No	facilities	were	provided	for	structuring	programs.	For	example,	the	IAS	hasno	procedure	call	or	return	instructions	to	link	different	programs.	4.	The	instruction	set	is	biased	toward	numerical	computation.	Programs	for	non-numerical	tasks
such	as	text	processing	were	difficult	to	write	and	executedslowly.	5.	Input-output	(10)	instructions	were	considered	of	minor	importance—in	fact,they	are	not	mentioned	in	Burks,	Goldstine,	and	von	Neumann	[1946]	beyondnoting	that	they	are	necessary.	IAS	had	two	basic	and	rather	inefficient	10instruction	types	[Estrin	1953].	The	input	instruction
INPUT(X,	N)	transferredN	words	from	an	input	device	to	the	CPU	and	then	to	N	consecutive	main	mem-ory	locations,	starting	at	address	X.	The	OUTPUT(X,	N)	instruction	transferredN	consecutive	words	from	the	memory	region	with	starting	address	X	to	an	out-put	device.	27	CHAPTER	1Computing	andComputers	1.2.3	The	Later	Generations	In
spite	of	their	design	deficiencies	and	the	limitations	on	size	and	speed	imposedby	early	electronic	technology,	the	IAS	and	other	first-generation	computers	intro-duced	many	features	that	are	central	to	later	computers:	the	use	of	a	CPU	with	asmall	set	of	registers,	a	separate	main	memory	for	instruction	and	data	storage,	andan	instruction	set	with	a
limited	range	of	operations	and	addressing	capabilities.Indeed	the	term	von	Neumann	computer	has	become	synonymous	with	a	computerof	conventional	design.	The	second	generation.	Computer	hardware	and	software	evolved	rapidlyafter	the	introduction	of	the	first	commercial	computers	around	1950.	The	vacuumtube	quickly	gave	way	to	the
transistor,	which	was	invented	at	Bell	Laboratories	in1947,	and	a	second	generation	of	computers	based	on	transistors	superseded	thefirst	generation	of	vacuum	tube-based	machines.	Like	a	vacuum	tube,	a	transistorserves	as	a	high-speed	electronic	switch	for	binary	signals,	but	it	is	smaller,cheaper,	sturdier,	and	requires	much	less	power	than	a
vacuum	tube.	Similarprogress	occurred	in	the	field	of	memory	technology,	with	ferrite	cores	becomingthe	dominant	technology	for	main	memories	until	superseded	by	all-transistormemories	in	the	1970s.	Magnetic	disks	became	the	principal	technology	for	sec-ondary	memories,	a	position	that	they	continue	to	hold.	Besides	better	electronic	circuits,
the	second	generation,	which	spans	thedecade	1954-64.	introduced	some	important	changes	in	the	design	of	CPUs	andtheir	instruction	sets.	The	IAS	computer	still	served	as	the	basic	model,	but	moreregisters	were	added	to	the	CPU	to	facilitate	data	and	address	manipulation.	Forexample,	index	registers	were	introduced	to	store	an	index	variable	I
of	the	kindappearing	in	the	statement	C(I):=A(I)	+	B(I)	(1.9)	28	SECTION	1.2The	Evolution	ofComputers	Index	registers	make	it	possible	to	have	indexed	instructions,	which	increment	ordecrement	a	designated	index	I	before	(or	after)	they	execute	their	main	operation.Consequently,	repeated	execution	of	an	indexed	operation	like	(1.9)	allows	it
tostep	automatically	through	a	large	array	of	data.	The	index	value	I	is	stored	in	aCPU	register	and	not	in	the	program,	so	the	program	Itself	does	not	change	duringexecution.	Another	innovation	was	the	introduction	of	two	programcontrolinstructions,	now	referred	to	as	call	and	return,	to	facilitate	the	linking	of	pro-grams;	see	also	Example	1.5.
"Scientific"	computers	of	the	second	generation,	such	as	the	IBM	7094	whichappeared	in	1962,	introduced	floating-point	number	formats	and	supportinginstructions	to	facilitate	numerical	processing.	Floating	point	is	a	type	of	scientificnotation	where	a	number	such	as	0.0000000709	is	denoted	by	7.09	X	10"8.	Afloating-point	number	consists	of	a	pair
of	fixed-point	numbers,	a	mantissa	Mand	an	exponent	E,	and	has	the	value	M	X	B~E.	In	the	preceding	example	M	=7.09,	E	=	-8,	and	B	=	10.	In	their	computer	representation	M	and	E	are	encoded	inbinary	and	embedded	in	a	word	of	suitable	size;	the	base	B	is	implicit.	Floating-point	numbers	eliminate	the	need	for	number	scaling;	floating-point
numbers	areautomatically	scaled	as	they	are	processed.	The	hardware	needed	to	implementfloating-point	arithmetic	instructions	directly	is	relatively	expensive.	Conse-quently,	many	computers	(then	and	now)	rely	on	software	subroutines	to	imple-ment	floating-point	operations	via	fixed-point	arithmetic.	Input-output	operations.	Computer	designers
soon	realized	that	IO	operations,that	is,	the	transfer	of	information	to	and	from	peripheral	devices	like	printers	andsecondary	memory,	can	severely	degrade	overall	computer	performance	if	doneinefficiently.	Most	IO	transfers	have	main	memory	as	their	final	source	or	destina-tion	and	involve	the	transfer	of	large	blocks	of	information,	for	instance,
moving	aprogram	from	secondary	to	main	memory	for	execution.	Such	a	transfer	can	takeplace	via	the	CPU,	as	in	the	following	fragment	of	a	hypothetical	IO	program:	Location	Instruction	Comment	LOOP	AC	:=	D(I)	M(I)	:=	ACI:=I+1if	I	<	MAX	go	to	LOOP	Input	word	from	IO	device	D	into	AC.Output	word	from	AC	to	main	memory.Increment	index
I.Test	for	end	of	loop.	Clearly,	the	IO	operation	ties	up	the	CPU	with	a	trivial	data-transfer	task.Moreover,	many	IO	devices	transfer	data	at	low	speeds	compared	to	that	of	theCPU	because	of	their	inherent	reliance	on	electromechanical	rather	than	electronictechnology.	Thus	the	CPU	is	idle	most	of	the	time	when	executing	an	IO	programdirected	at	a
relatively	slow	device	such	as	a	printer.	To	eliminate	this	bottleneck,computers	such	as	the	IBM	7094	introduced	input-output	processors	(IOPs),	orchannels	in	IBM	parlance,	which	are	special-purpose	processing	units	designedexclusively	to	control	IO	operations.	They	do	so	by	executing	IO	programs	(seepreceding	sample),	but	channeling	the	data
through	registers	in	the	IO	processor,rather	than	through	the	CPU.	Hence	IO	data	transfers	can	take	place	independently	of	the	CPU,	permitting	the	CPU	to	execute	user	programs	while	10	operations	aretaking	place.	Programming	languages.	An	important	development	of	the	mid-1950s	wasthe	introduction	of	"high	level"	programming	languages,
which	are	far	easier	touse	than	assembly	languages	because	they	permit	programs	to	be	written	in	a	formmuch	closer	to	a	computer	user's	problem	specification.	A	high-level	language	isintended	to	be	usable	on	many	different	computers.	A	special	program	called	acompiler	translates	a	user	program	from	the	high-level	language	in	which	it	is	writ-ten
into	the	machine	language	of	the	particular	computer	on	which	the	program	isto	be	executed.	The	first	successful	high-level	programming	language	was	FORTRAN	(fromFORmula	TRANslation),	developed	by	an	IBM	group	under	the	direction	of	JohnBackus	from	1954	to	1957.	FORTRAN	permits	the	specification	of	numericalalgorithms	in	a	form
approximating	normal	algebraic	notation.	For	example,	thevector	addition	task	in	Figure	1.16	can	be	expressed	by	the	following	two-line	pro-gram	in	the	original	version	of	FORTRAN:	DO	5	1=1,	1000	5	C(I)	=	A(I)	+	B(I)	FORTRAN	has	continued	to	be	widely	used	for	scientific	programming	and,	likenatural	languages,	it	has	changed	over	the	years.
The	version	of	FORTRAN	knownas	FORTRAN90	introduced	in	1990	replaces	the	preceding	DO	loop	with	the	sin-gle	vector	statement	C(1:1000)	=	A(1:1000)	+	B(1:1000)	(1.10)	High-level	languages	were	also	developed	in	the	1950s	for	business	applica-tions.	These	are	characterized	by	instructions	that	resemble	English	statements	andoperate	on
textual	as	well	as	numerical	data.	One	of	the	earliest	such	languages	wasCommon	Business	Oriented	Language	(COBOL),	which	was	defined	in	1959	by	agroup	representing	computer	users	and	manufacturers	and	sponsored	by	the	U.S.Department	of	Defense.	Like	FORTRAN.	COBOL	has	continued	(in	variousrevised	forms)	to	be	among	the	most
widely	used	programming	languages.	FOR-TRAN	and	COBOL	are	the	forerunners	of	other	important	high-level	languages,including	Basic,	Pascal,	C,	and	Java,	the	latter	dating	from	the	mid-1990s.	EXAMPLE	1.5	A	NONSTANDARD	ARCHITECTURE:	STACK	COMPUTERS.	Although	most	computers	follow	the	von	Neumann	model,	a	few	alternatives
wereexplored	quite	early	in	the	electronic	era.	In	the	stack	organization	illustrated	in	Fig-ure	1.16a	a	stack	memory	replaces	the	accumulator	and	other	CPU	registers	used	fortemporary	data	storage.	A	stack	resembles	the	array	of	contiguous	storage	locationsfound	in	main	memory,	but	it	has	a	very	different	mode	of	access.	Stack	locations	haveno
external	addresses;	all	read	and	write	operations	refer	to	one	end	of	the	stack	calledthe	top	of	the	stack	TOS.	A	push	operation	writes	a	word	into	the	next	unused	locationTOS	+	1	and	causes	this	location	to	become	the	new	TOS.	A	pop	operation	reads	theword	stored	in	the	current	TOS	and	causes	the	location	TOS	-	1	below	TOS	to	becomethe	new
TOS.	Hence	TOS	serves	as	a	dynamic	entry	point	to	the	stack,	which	expandsand	contracts	in	response	to	push	and	pop	operations,	respectively.	The	region	abovethe	stack	(shaded	in	Figure	1.16a)	is	unused,	but	it	is	available	for	future	use.	Among	29	CHAPTER	1Computing	andComputers	30	SECTION	1.2The	Evolution	ofComputers	Program
PUSHWPUSH	3PUSH	X	-PUSHYSUBTRACTMULTIPLYADDPOPZ	...	Controlunit	—	Arithmetic-logicunit	sp|	-4-	i	1	/	1	*—	/	/	Stack	pointer	*	...	^""~-	Top	of	stack	TOS	Stack	(a)	...	z	TOS	w	...	PUSHW	...	Z	TOS	x	-	y	3	H'	z	TOS	3	w	...	PUSH	3	...	Z	TOS	3	x	(x	-	y)	w	Z	TOS	X	3	IV	...	PUSHX	...	Z	TOS	w	+	3	X	(x	-	v)	Z	TOS	y	X	3	w	...	PUSHY	Z	w
+	3	x	(x->)	TOS	w	+	3	x	(x-y)	...	SUBTRACT	MULTIPLY	ADD	POPZ	(A)	Figure	1.16	(a)	Essentials	of	a	stack	processor;	(b)	stack	states	during	the	execution	ofz	:=	w	+	3	x	(x-y).	the	earliest	stack	computers	was	the	Burroughs	B5000,	first	delivered	in	1963[Siewiorek.	Bell,	and	Newell	1982];	a	recent	example	is	the	Sun	picoJava	micropro-cessor
designed	for	fast	execution	of	compiled	Java	code	[O'Connor	and	Tremblay1997].	In	a	stack	machine	an	instruction's	operands	are	stored	at	the	top	of	the	stack,	sodata-processing	instructions	do	not	need	to	contain	addresses	as	they	do	in	a	conventional,	von	Neumann	computer.	The	add	operation	x	+	y	is	specified	for	a	stackmachine	by	the	following
sequence	of	three	instructions:	PUSH*PUSHyADD	The	first	PUSH	instruction	loads	x	into	TOS.	Execution	of	PUSH	y	causes	x's	locationto	become	TOS	-	1	and	places	y	in	the	new	TOS	immediately	above	x.	To	execute	ADD.the	top	two	words	of	the	stack	are	popped	into	the	ALU	where	they	are	added,	and	thesum	is	pushed	back	into	the	stack.	Hence
in	the	preceding	program	fragment,	ADDcomputes	x	+	y,	which	replaces	x	and	y	at	the	top	of	the	stack.	The	electronic	circuits	thatcarry	out	these	actions	can	be	complicated,	but	they	are	hidden	from	the	programmer.	Akey	component	is	a	register	called	the	stack	pointer	SP	which	stores	the	internal	addressof	TOS,	and	automatically	adjusts	the	TOS
for	every	push	and	pop	operation.	A	pro-gram	counter	PC	keeps	track	of	instruction	addresses	in	the	usual	manner.	A	stack	computer	evaluates	arithmetic	and	other	expressions	using	a	formatknown	as	Polish	notation,	named	after	the	Polish	logician	Jan	Lukasiewicz	(1878-1956).	Instead	of	placing	an	operator	between	its	operands	as	in	x	+	y,	the
operator	isplaced	to	the	right	of	its	operands	as	in	x	y	+.	A	more	complex	expression	such	as	z	:=w	+	3	x	(x	-	y)	becomes	w	3	x	y	x	+	:=	(1-11)	in	Polish	notation,	and	the	expression	is	evaluated	from	left	to	right.	Note	that	Polishnotation	eliminates	the	need	for	parentheses.	The	Polish	expression	(1.11)	leadsdirectly	to	the	eight-instruction	stack
program	shown	in	Figure	1.16a.	The	step-by-stepexecution	of	this	code	fragment	is	illustrated	in	Figure	1.16b.	Here	it	is	assumed	thatw,x,y,z	represent	the	values	of	operands	stored	at	the	memory	addresses	W,X,Y,	and	Z.respectively.	Stack	computers	such	as	the	B5000	employ	a	main	memory	M	to	store	programsand	data	in	much	the	same	way	as	a
conventional	computer.	For	cost	reasons,	the	CPUcontains	only	a	small	stack—a	two-word	stack	in	the	B5000	case—-implemented	byhigh-speed	registers.	However,	the	stack	expands	automatically	into	M	by	treatingsome	main	memory	locations	as	if	they	were	stack	registers	and	coupling	them	withthose	in	the	CPU.	While	stack	processors	can
evaluate	complex	expressions	such	as(1.11)	efficiently,	they	are	generally	slower	than	von	Neumann	machines,	especiallywhen	executing	vector	operations	such	as	(1.10).	Large	stack	computers	were	success-fully	marketed	for	many	years,	notably	by	Burroughs	Corp.	However,	the	stack	con-cept	eventually	became	widely	used	in	only	two	specialized
applications:	Pocket	calculators	sometimes	employ	a	stack	organization	to	take	advantage	of	theconciseness	of	Polish	notation	when	entering	data	and	commands	manually	via	akeypad.	Stacks	are	included	in	most	conventional	computers	to	implement	subroutine	calland	return	instructions.	In	its	basic	form,	a	call-subroutine	instruction	takes	the
formCALL	SUB.	It	first	saves	the	current	contents	of	PC—the	calling	routine's	returnaddress—by	pushing	it	into	a	stack	region	of	M	that	is	under	the	control	of	a	stackpointer	SP.	Then	SUB.	the	start	address	of	the	subroutine	being	called,	is	loadedinto	PC,	and	its	execution	begins.	Control	is	returned	to	the	calling	program	whenthe	subroutine
executes	a	RETURN	instruction,	whose	function	is	to	pop	the	returnaddress	from	the	top	of	the	stack	and	load	it	back	into	PC.	1.	2.	31	CHAPTER	1Computing	andComputers	32	SECTION	1.2The	Evolution	ofComputers	System	management.	In	the	early	days,	all	programs	or	jobs	were	run	sepa-rately,	and	the	computer	had	to	be	halted	and	prepared
manually	for	each	new	pro-gram	to	be	executed.	With	the	improvements	in	10	equipment	and	programmingmethodology	that	came	with	the	second-generation	machines,	it	became	feasible	toprepare	a	batch	of	jobs	in	advance,	store	them	on	magnetic	tape,	and	then	have	thecomputer	process	the	jobs	in	one	continuous	sequence,	placing	the	results
onanother	magnetic	tape.	This	mode	of	system	management	is	termed	batch	process-ing.	Batch	processing	requires	the	use	of	a	supervisory	program	called	a	batchmonitor,	which	is	permanently	resident	in	main	memory.	A	batch	monitor	is	a	rudi-mentary	version	of	an	operating	system,	a	system	program	(as	opposed	to	a	user	orapplication	program)

designed	to	manage	a	computer's	resources	efficiently	andprovide	a	set	of	common	services	to	its	users.	Later	operating	systems	were	designed	to	enable	a	single	CPU	to	process	aset	of	independent	user	programs	concurrently,	a	technique	called	multiprogram-ming.	It	recognizes	that	a	typical	program	alternates	between	program	executionwhen	it
requires	use	of	the	CPU,	and	IO	operations	when	it	requires	use	of	anIOP.	Multiprogramming	is	accomplished	by	the	CPU	temporarily	suspending	exe-cution	of	its	current	program,	beginning	execution	of	a	second	program,	andreturning	to	the	first	program	later.	Whenever	possible,	a	suspended	program	isassigned	an	IOP,	which	performs	any
needed	10	functions.	Consequently,	multi-programming	attempts	to	keep	a	CPU	(usually	viewed	as	the	computer's	mostprecious	resource)	and	any	available	IOPs	busy	by	overlapping	CPU	and	10	oper-ations.	Multiprogrammed	computers	that	process	many	user	programs	concurrentlyand	support	users	at	interactive	terminals	or	workstations	are
sometimes	calledtime-sharing	systems.	The	third	generation.	This	generation	is	traditionally	associated	with	the	intro-duction	of	integrated	circuits	(ICs),	which	first	appeared	commercially	in	1961,	toreplace	the	discrete	electronic	circuits	used	in	second-generation	computers.	Thetransistor	continued	as	the	basic	switching	device,	but	ICs	allowed
large	numbersof	transistors	and	associated	components	to	be	combined	on	a	tiny	piece	of	semi-conductor	material,	usually	silicon.	IC	technology	initiated	a	long-term	trend	incomputer	design	toward	smaller	size,	higher	speed,	and	lower	hardware	cost.	Perhaps	the	most	significant	event	of	the	third-generation	period	(which	beganaround	1965)	was
recognition	of	the	need	to	standardize	computers	in	order	toallow	software	to	be	developed	and	used	more	efficiently.	By	the	mid-1960s	a	fewdozen	manufacturers	of	computers	around	the	world	were	each	producingmachines	that	were	incompatible	with	those	of	other	manufacturers.	The	cost	ofwriting	and	maintaining	programs	for	a	particular
computer—the	software	cost—began	to	exceed	that	of	the	computer's	hardware.	At	the	same	time	many	big	usersof	computers,	such	as	banks	and	insurance	companies,	were	creating	huge	amountsof	application	software	on	which	their	business	operations	were	becoming	verydependent.	Switching	to	a	different	computer	and	making	one's	old
software	obso-lete	was	thus	an	increasingly	unattractive	proposition.	Influenced	by	these	considerations,	IBM	developed	(at	a	cost	of	about	$5	bil-lion)	what	was	to	be	the	most	influential	third-generation	computer,	the	System/360,	which	it	announced	in	1964	and	delivered	the	following	year;	see	Figure	1.17.System/360	was	actually	a	series	of
computers	distinguished	by	model	numbers	33	—*-	Control	Instruction	decoder	(may	be	ZV	si?nals	Program	microprogrammed)	control	unit	1U	IU	devices	devices	PCU	CHAPTER	1	4	t	1	1	»	1	AR	1	i	i	i	System	/360	1	IO	interface	Computing	andComputers	r	IO	Program	status	word	PSW	i	10processor(channel)	processor	(channel)	SR	PC	i	v	II	i	n	ii	r	H
ii	Main	memorycontrol	unit	II	"	»	II	Sixteen	Four	64-bit	32-bit	general	floatingpoint	registers	registers	i	1	1	i	n	Main	memory	M	r	Floating-pointALU	"I	Fixed-pointALU	DecimalALU	Data-processingunit	DPU	Figure	1.17	Structure	of	the	IBM	System/360.	and	intended	to	cover	a	wide	range	of	computing	performance	[Siewiorek,	Bell,and	Newell	1982;
Prasad	1989].	The	various	System/360	models	were	designed	tobe	software	compatible	with	one	another,	meaning	that	all	models	in	the	seriesshared	a	common	instruction	set.	Programs	written	for	one	model	could	be	runwithout	modification	on	any	other;	only	the	execution	time,	memory	usage,	and	thelike	would	change.	Software	compatibility
enabled	computer	owners	to	upgradetheir	systems	without	having	to	rewrite	large	amounts	of	software.	The	System/360models	also	used	a	common	operating	system.	OS/360,	and	the	manufacturer	sup-plied	specialized	software	to	support	such	widely	used	applications	as	transactionprocessing	and	database	management.	In	addition,	the	System/360
models	hadmany	hardware	characteristics	in	common,	including	the	same	interface	for	attach-ing	10	devices.	While	the	System/360	standardized	much	of	IBM's	own	product	line,	it	alsobecame	a	de	facto	standard	for	large	computers,	now	referred	to	as	mainframecomputers,	produced	by	other	manufacturers.	The	long	list	of	makers	of	System/360-
compatible	machines	includes	such	companies	as	Amdahl	in	the	I	oiled	Statesand	Hitachi	in	Japan.	The	System/360	series	was	also	remarkably	long-lived.	Itevolved	into	various	newer	mainframe	computer	series	introduced	by	IBM	over	theyears,	all	of	which	maintained	software	compatibility	with	the	original	System/	34	SECTION	1.2The	Evolution
ofComputers	360;	for	example,	the	System/370	introduced	in	1970,	the	4300	introduced	in	1979,and	the	System/390	introduced	in	1990.	The	System/360	added	only	modestly	to	the	basic	principles	of	the	von	Neu-mann	computer,	but	it	established	a	number	of	widely	followed	conventions	anddesign	styles.	It	had	about	200	distinct	instruction'types
(opcodes)	with	manyaddressing	modes	and	data	types,	including	fixed-point	and	floating-point	numbersof	various	sizes.	It	replaced	the	small	and	unstructured	set	of	data	registers	(AC,MQ,	etc.)	found	in	earlier	computers	with	a	set	of	16	identical	general-purpose	reg-isters,	all	individually	addressable.	This	is	called	the	general-register
organization.The	System/360	had	separate	arithmetic-logic	units	for	processing	various	datatypes;	the	fixed-point	ALU	was	used	for	address	computations	including	indexing.The	8-bit	unit	byte	was	defined	as	the	smallest	unit	of	information	for	data	trans-mission	and	storage	purposes.	The	System/360	also	made	32	bits	(4	bytes)	themain	CPU	word
size,	so	that	32	bits	and	"word"	have	become	synonymous	in	thecontext	of	large	computers.	The	CPU	had	two	major	control	states:	a	supervisor	state	for	use	by	the	operat-ing	system	and	a	user	state	for	executing	application	programs.	Certain	program-control	instructions	were	"privileged"	in	that	they	could	be	executed	only	when	theCPU	was	in
supervisor	state.	These	and	other	special	control	states	gave	rise	to	theconcept	of	a	program	status	word	(PS	W)	which	was	stored	in	a	special	CPU	regis-ter,	now	generally	referred	to	as	a	status	register	(SR).	The	SR	register	encapsu-lated	the	key	information	used	by	the	CPU	to	record	exceptional	conditions	such	asCPU-detected	errors	(an
instruction	attempting	to	divide	by	zero,	for	example),hardware	faults	detected	by	error-checking	circuits,	and	urgent	service	requests	orinterrupts	generated	by	IO	devices.	Architecture	versus	implementation.	With	the	advent	of	the	third	generation,	adistinction	between	a	computer's	overall	design	and	its	implementation	detailsbecame	apparent.	As
defined	by	System/360's	designers	[Prasad	1989],	the	archi-tecture	of	a	computer	is	its	structure	and	behavior	as	seen	by	a	programmer	work-ing	at	the	assembly-language	level.	The	architecture	includes	the	computer'sinstruction	set,	data	formats,	and	addressing	modes,	as	well	as	the	general	design	ofits	CPU,	main	memory,	and	IO	subsystems.	The
architecture	therefore	defines	aconceptual	model	of	a	computer	at	a	particular	level	of	abstraction.	A	computer'simplementation,	on	the	other	hand,	refers	to	the	logical	and	physical	design	tech-niques	used	to	realize	the	architecture	in	any	specific	instance.	The	term	computerorganization	also	refers	to	the	logical	aspects	of	the	implementation,	but
theboundary	between	the	terms	architecture	and	organization	is	vague.	Hence	we	can	say	that	the	models	of	the	IBM	System/360	series	have	a	com-mon	architecture	but	different	implementations.	These	differences	reflect	the	exist-ence	of	physical	circuit	technologies	with	different	cost/performance	ratios	forconstructing	processing	circuits	and
memories.	To	achieve	instruction-set	compati-bility	across	many	models,	the	System/360	also	used	an	implementation	techniquecalled	microprogramming.	Originally	proposed	in	the	early	1950s	by	Maurice	V.Wilkes	at	Cambridge	University,	microprogramming	allows	a	CPU's	programcontrol	unit	PCU	to	be	designed	in	a	systematic	and	flexible	way
[Wilkes	andStringer	1953].	Low-level	control	sequences	known	as	microprograms	are	placedin	a	special	control	memory	in	the	PCU	so	that	an	instruction	from	the	CPU's	main	instruction	set	is	executed	by	invoking	and	executing	the	corresponding	micropro-gram.	A	CPU	with	no	floating-point	arithmetic	circuits	can	execute	floatingpointinstructions
(albeit	slowly)	if	microprograms	are	written	to	perform	the	desiredfloating-point	operations	by	means	of	fixed-point	arithmetic	circuits.	Microprogramming	allowed	the	smaller	System/360	models	to	implement	the	full	System/360	instruction	set	with	less	hardware	than	the	larger,	faster	models,	some	of	whichwere	not	microprogrammed.	Other
developments.	The	System/360	was	typical	of	commercial	computersaimed	at	both	business	and	scientific	applications.	Efforts	were	also	directed	byvarious	manufacturers	towards	the	design	of	extremely	powerful	(and	expensive)scientific	computers,	loosely	termed	supercomputers.	Control	Data	Corp.,	forinstance,	produced	a	series	of	commercially
successful	supercomputers	beginningwith	the	CDC	6660	in	1964,	and	continuing	into	the	1980s	with	the	subsequentCYBER	series.	These	early	supercomputers	experimented	with	various	types	ofparallel	processing	to	improve	their	performance.	One	such	technique	called	pipe-lining	involves	overlapping	the	execution	of	instructions	from	the	same
programwithin	a	specially	designed	CPU.	Another	technique,	which	allows	instructionsfrom	different	programs	to	be	executed	simultaneously,	employs	a	computer	withmore	than	one	CPU;	such	a	computer	is	called	a	multiprocessor.	A	contrasting	development	of	this	period	was	the	mass	production	of	small,low-cost	computers	called	minicomputers.
Their	origins	can	be	traced	to	theLINC	(Laboratory	Instrument	Computer)	developed	at	MIT	in	the	early	1960s[Siewiorek,	Bell,	and	Newell	1982].	This	machine	influenced	the	design	of	thePDP	(Programmed	Data	Processor)	series	of	small	computers	introduced	by	Dig-ital	Equipment	Corp.	(Digital)	in	1965,	which	did	much	to	establish	the	mini-
computer	market.	Minicomputers	are	characterized	by	short	word	size—CPUword	sizes	of	8	and	16	bits	were	typical—limited	hardware	and	software	facili-ties,	and	small	physical	size.	Most	important,	their	low	cost	made	them	suitablefor	many	new	applications,	such	as	the	industrial	process	control	where	a	com-puter	is	permanently	assigned	to	one
particular	application.	The	Digital	VAXseries	of	minicomputers	introduced	in	1978	brought	general-purpose	computingto	many	small	organizations	that	could	not	afford	the	high	cost	of	a	mainframecomputer.	35	CHAPTER	1Computing	andComputers	1.3	THE	VLSI	ERA	Since	the	1960s	the	dominant	technology	for	manufacturing	computer	logic
andmemory	circuits	has	been	the	integrated	circuit	or	IC.	This	technology	has	evolvedsteadily	from	ICs	containing	just	a	few	transistors	to	those	containing	thousands	ormillions	of	transistors;	the	latter	case	is	termed	very	large-scale	integration	orVLSI.	The	impact	of	VLSI	on	computer	design	and	application	has	been	profound.VLSI	allows
manufacturers	to	fabricate	a	CPU.	main	memory,	or	even	all	the	elec-tronic	circuits	of	a	computer,	on	a	single	IC	that	can	be	mass-produced	at	\ery	lowcost.	This	has	resulted	in	new	classes	of	machines	ranging	from	portable	personalcomputers	to	supercomputers	that	contain	thousands	of	CPUs.	36	SECTION	1.3The	VLSI	Era	&^>	(a)	(b)	(c)	Figure
1.18	Some	representative	IC	packages:	(a)	32-pin	small-outline	J-lead	(SOJ);	(b)	132-pin	plasticquad	flatpack	(PQFP);	(c)	84-pin	pin-grid	array	(PGA).	[Courtesy	of	Sharp	ElectronicsCorp.]	1.3.1	Integrated	Circuits	The	integrated	circuit	was	invented	in	1959	at	Texas	Instruments	and	FairchildCorporations	[Braun	and	McDonald	1982].	It	quickly	became
the	basic	buildingblock	for	computers	of	the	third	and	subsequent	generations.	(The	designation	ofcomputers	by	generation	largely	fell	into	disuse	after	the	third	generation.)	An	IC	isan	electronic	circuit	composed	mainly	of	transistors	that	is	manufactured	in	a	tiny-rectangle	or	chip	of	semiconductor	material.	The	IC	is	mounted	into	a	protectiveplastic
or	ceramic	package,	which	provides	electrical	connection	points	called	pinsor	leads	that	allow	the	IC	to	be	connected	to	other	ICs,	to	input-output	devices	likea	keypad	or	screen,	or	to	a	power	supply.	Figure	1.18	depicts	several	representativeIC	packages.	Typical	chip	dimensions	are	10	X	10	mm,	while	a	package	like	that	ofFigure	1.18b	is
approximately	30	X	30	X	4	mm.	The	IC	package	is	often	consider-ably	bigger	than	the	chip	it	contains	because	of	the	space	taken	by	the	pins.	ThePGA	package	of	Figure	1.18c	has	an	array	of	pins	(as	many	as	300	or	more)	pro-jecting	from	its	underside.	A	multichip	module	is	a	package	containing	several	ICchips	attached	to	a	substrate	that	provides
mechanical	support,	as	well	as	electricalconnections	between	the	chips.	Packaged	ICs	are	often	mounted	on	a	printed	cir-cuit	board	that	serves	to	support	and	interconnect	the	ICs.	A	contemporary	com-puter	consists	of	a	set	of	ICs,	a	set	of	IO	devices,	and	a	power	supply.	The	numberof	ICs	can	range	from	one	IC	to	several	thousand,	depending	on	the
computer'ssize	and	the	IC	types	it	uses.	IC	density.	An	integrated	circuit	is	roughly	characterized	by	its	density,defined	as	the	number	of	transistors	contained	in	the	chip.	As	manufacturing	tech-niques	improved	over	the	years,	the	size	of	the	transistors	in	an	IC	and	their	inter-connecting	wires	shrank,	eventually	reaching	dimensions	below	a	micron
or	1	pm.(By	comparison,	the	width	of	a	human	hair	is	about	75	ujn.)	Consequently,	IC	den-sities	have	increased	steadily,	while	chip	size	has	varied	very	little.	The	earliest	ICs—the	first	commercial	IC	appeared	in	1961—contained	fewerthan	100	transistors	and	employed	small-scale	integration	or	SSI.	The	termsmedium-scale,	large-scale,	and	very-
large-scale	integration	(MSI,	LSI	and	VLSI.	•	lG-bit	,•*	a	DRAM	.	„'	109	•	•	u	lM-bit	./^DRAM	./•	64-bit	c	c	C	j	6_bjt	./*	microprocessor	106	microprocessor	A*	32-bit	£	v^	microprocessor	|	lK-bit	v»	8-bit	microprocessorDRAM	./^	■a	y	103	1	•SSI	_,—	•	4-bit	microprocessorMSI	i	i	i	i	1960	1970	1980	1990	Year	2000	2010	Figure	1.19	Evolution	of	the
density	of	commercial	ICs.	37	CHAPTER	1Computing	andComputers	respectively)	are	applied	to	ICs	containing	hundreds,	thousands,	and	millions	oftransistors,	respectively.	The	boundaries	between	these	IC	classes	are	loose,	andVLSI	often	serves	as	a	catchall	term	for	very	dense	circuits.	Because	their	manu-facture	is	highly	automated—it	resembles
a	printing	process—ICs	can	be	manufac-tured	in	high	volume	at	low	cost	per	circuit.	Indeed,	except	for	the	latest	anddensest	circuits,	the	cost	of	an	IC	has	stayed	fairly	constant	over	the	years,	imply-ing	that	newer	generations	of	ICs	deliver	far	greater	value	(measured	by	computingperformance	or	storage	capacity)	per	unit	cost	than	their
predecessors	did.	Figure	1.19	shows	the	evolution	of	IC	density	as	measured	by	two	of	the	dens-est	chip	types:	the	dynamic	random-access	memory	(DRAM),	a	basic	componentof	main	memories,	and	the	single-chip	CPU	or	microprocessor.	Around	1970	itbecame	possible	to	manufacture	all	the	electronic	circuits	for	a	pocket	calculator	ona	single	IC
chip.	This	development	was	quickly	followed	by	single-chip	DRAMsand	microprocessors.	As	Figure	1.19	shows,	the	capacity	of	the	largest	availableDRAM	chip	was	IK	=	210	bits	in	1970	and	has	been	growing	steadily	since	then,reaching	1M	=	220	bits	around	1985.	A	similar	growth	has	occurred	in	the	com-plexity	of	microprocessors.	The	first
microprocessor,	Intel's	4004,	which	wasintroduced	in	1971,	was	designed	to	process	4-bit	words.	The	Japanese	calculatormanufacturer	Busicom	commissioned	the	4004	microprocessor,	but	after	Busi-com's	early	demise,	Intel	successfully	marketed	the	4004	as	a	programmable	con-troller	to	replace	standard,	nonprogrammable	logic	circuits.	As	IC
technologyimproved	and	chip	density	increased,	the	complexity	and	performance	of	one-chipmicroprocessors	increased	steadily,	as	reflected	in	the	increase	in	CPU	word	size	to8	and	then	16	bits	by	the	mid-1980s.	By	1990	manufacturers	could	fabricate	theentire	CPU	of	a	System/360-class	computer,	along	with	part	of	its	main	memory,on	a	single	IC.
The	combination	of	a	CPU,	memory,	and	IO	circuits	in	one	IC	(or	asmall	number	of	ICs)	is	called	a	microcomputer.	SECTION	1.3The	VLSI	Era	IC	families.	Within	IC	technology	several	subtechnologies	exist	that	are	dis-tinguished	by	the	transistor	and	circuit	types	they	employ.	Two	of	the	most	impor-tant	of	these	technologies	are	bipolar	and	unipolar;
the	latter	is	normally	referred	toas	MOS	(metal-oxide-semiconductor)	after	its	physical	structure.	Both	bipolar	andMOS	circuits	have	transistors	as	their	basic	elements!	They	differ,	however,	in	thepolarities	of	the	electric	charges	associated	with	the	primary	carriers	of	electricalsignals	within	their	transistors.	Bipolar	circuits	use	both	negative
carriers	(elec-trons)	and	positive	carriers	(holes).	MOS	circuits,	on	the	other	hand,	use	only	onetype	of	charge	carrier:	positive	in	the	case	of	P-type	MOS	(PMOS)	and	negative	inthe	case	of	N-type	MOS	(NMOS).	Various	bipolar	and	MOS	IC	circuit	types	or	ICfamilies	have	been	developed	that	provide	trade-offs	among	density,	operatingspeed,	power
consumption,	and	manufacturing	cost.	An	MOS	family	that	effi-ciently	combines	PMOS	and	NMOS	transistors	in	the	same	IC	is	complementaryMOS	or	CMOS.	This	technology	came	into	widespread	use	in	the	1980s	and	hasbeen	the	technology	of	choice	for	microprocessors	and	other	VLSI	ICs	since	thenbecause	of	its	combination	of	high	density,	high
speed,	and	very	low	power	con-sumption	[Weste	and	Eshragian	1992].	EXAMPLE	1.6	A	ZERO-DETECTION	CIRCUIT	EMPLOYING	CMOS	TECH-NOLOGY.	To	illustrate	the	role	of	transistors	in	computing,	we	examine	a	smallCMOS	circuit	whose	function	is	to	detect	when	a	4-bit	word	x0xlx2xi	becomes	zero.The	circuit's	output	z	should	be	1	when
x0x]x2xi	=	0000;	it	should	be	0	for	the	other	15combinations	of	input	values.	Zero	detection	is	quite	a	common	operation	in	data	pro-cessing.	For	example,	it	is	used	to	determine	when	a	program	loop	terminates,	as	in	theif	statement	(location	5R)	appearing	in	the	IAS	program	of	Figure	1.15.	Figure	1.20	shows	a	particular	implementation	ZD	of	zero
detection	using	a	repre-sentative	CMOS	subfamily	known	as	static	CMOS.	The	circuit	is	shown	in	standardsymbolic	form	in	Figure	1.20a.	It	consists	of	equal	numbers	of	PMOS	transistorsdenoted	5,:57	and	NMOS	transistors	denoted	SS:SU.	Each	transistor	acts	as	an	on-offswitch	with	three	terminals,	where	the	center	terminal	c	controls	the	switch's
state.When	turned	on,	a	signal	propagation	path	is	created	between	the	transistor's	upper	andlower	terminals;	when	turned	off,	that	path	is	broken.	An	NMOS	transistor	is	turned	onby	applying	1	to	its	control	terminal	c;	it	is	turned	off	by	applying	0	to	c.	A	PMOS	tran-sistor,	on	the	other	hand,	is	turned	on	by	c	-	0	and	turned	off	by	c	=	1.	Each	set	of
input	signals	applied	to	ZD	causes	some	transistors	to	switch	on	andothers	to	switch	off,	which	creates	various	signal	paths	through	the	circuit.	In	Figure1.20	the	constant	signals	0	and	1	are	applied	at	various	points	in	ZD.	(These	signals	arederived	from	ZD's	electrical	power	supply.)	The	0/1	signals	"flow"	through	the	circuitalong	the	paths	created
by	the	transistors	and	determine	various	internal	signal	values,as	well	as	the	value	applied	to	the	main	output	line	z.	Figure	1.20b	shows	the	signalsand	signal	transmission	paths	produced	by	x0xix2x3	-	0001.	The	first	input	signal	x0	=	0is	applied	to	PMOS	transistor	5,	and	NMOS	transistor	5g;	hence	S,	is	turned	on	and	5gis	turned	off.	Similarly,	x,	=
0	turns	S2	on	and	S9	off.	A	path	is	created	through	S,	andS2,	which	applies	1	to	the	internal	line	y,,	as	shown	by	the	left-most	heavy	arrow	in	Fig-ure	1.20b.	In	the	same	way	the	remaining	input	combinations	make	y2	=	0	and	y3	=	1.The	latter	signal	is	applied	to	the	two	right-most	transistors	turning	S7	off	and	514	on,which	creates	a	path	from	the
zero	source	to	the	primary	output	line	via	514,	so	z	=	0	asrequired.	If	we	change	input	x3	from	1	to	0	in	Figure	1.20b,	the	following	chain	of	eventsoccurs:	54	turns	on	and	5,,	turns	off,	changing	y2	to	1.	Then	5I3	turns	on	and	S6	turnsoff,	making	y3	=	0.	Finally,	the	new	value	of	y3	turns	57	on	and	S]4	off,	so	z	becomes	1.	Output	Inputs	PMOS
transistor	NMOS	transistor	(a)	;	=	0	xQ	=	0	xl	=	0	x2	-	0	*3	=	1	Transistor	switched	on	Transistor	switched	off	(b)	Figure	1.20	(a)	CMOS	circuit	ZD	for	zero	detection;	(b)	state	of	ZD	with	input	combination	xQxlx2x}	=	0001	making	z	=	0.	Hence	the	zero	input	combination	x0xlx2x3	=	0000	makes	c	=	1	as	required.	It	canreadily	be	verified	that	no	other
input	combination	does	this.	39	CHAPTER	1Computing	andComputers	A	transistor	circuit	like	that	of	Figure	1.20	models	the	behavior	of	a	digitalcircuit	at	a	low	level	of	abstraction	called	the	switch	level.	Because	many	of	theICs	of	interest	contain	huge	numbers	of	transistors,	it	is	rarely	practical	to	analyzetheir	computing	functions	at	the	switch
level.	Instead,	we	move	to	higher	abstrac-tion	levels,	two	of	which	are	illustrated	in	Figure	1.21.	At	the	gate	or	logicAexe\illustrated	by	Figure	1.21a.	we	represent	certain	common	subcircuits	by	symbolic	40	SECTION	1.3The	VLSI	Era	NOR	gates	NAND	gate	(a)	NOT	gate(inverter)	Zerodetector	00	Figure	1.21	The	zero-detection	circuit	of	Figure	1.20
modeled	at	(a)	the	gate	level	and	(b)	the	regis-ter	level	of	abstraction.	components	called	(logic)	gates.	This	particular	logic	circuit	comprises	four	gatesA,	B,	C,	and	D	of	three	different	types	as	indicated;	note	that	each	gate	type	has	adistinct	graphic	symbol.	In	moving	from	the	switch	level,	we	collapse	a	multi-transistor	circuit	into	a	single	gate	and
discard	all	its	internal	details.	A	key	advan-tage	of	the	logic	level	is	that	it	is	technology	independent,	so	it	can	be	used	equallywell	to	describe	the	behavior	of	any	IC	family.	In	dealing	with	computer	design,we	also	use	an	even	higher	level	of	abstraction	known	as	the	register	or	register-transfer	level.	It	treats	the	entire	zero-detection	circuit	as	a
primitive	or	indivisiblecomponent,	as	in	Figure	1.21b.	The	register	level	is	the	level	at	which	we	describethe	internal	workings	of	a	CPU	or	other	processor	as,	for	example,	in	Figures	1.2and	1.17.	Observe	that	the	primitive	components	(represented	by	boxes)	in	thesediagrams	include	registers,	ALUs,	and	the	like.	When	we	treat	an	entire
CPU,memory,	or	computer	as	a	primitive	component,	we	have	moved	to	the	highestlevel	of	abstraction,	which	is	called	the	processor	or	system	level.	1.3.2	Processor	Architecture	By	1980	computers	were	classified	into	three	main	types:	mainframe	computers,minicomputers,	and	microcomputers.	The	term	mainframe	was	applied	to	the	tradi-tional
"large"	computer	system,	often	containing	thousands	of	ICs	and	costing	mil-lions	of	dollars.	It	typically	served	as	the	central	computing	facility	for	anorganization	such	as	a	university,	a	factory,	or	a	bank.	Mainframes	were	thenroom-sized	machines	placed	in	special	computer	centers	and	not	directly	accessibleto	the	average	user.	The	minicomputer
was	a	smaller	(desk	size)	and	slower	ver-sion	of	the	mainframe,	but	its	relatively	low	cost	(hundreds	of	thousands	of	dollars)made	it	suitable	as	a	"departmental"	computer	to	be	shared	by	a	group	of	users—ina	small	business,	for	example.	The	microcomputer	was	even	smaller,	slower,	andcheaper	(a	few	thousand	dollars),	packing	all	the	electronics	of
a	computer	into	ahandful	of	ICs,	including	microprocessor	(CPU),	memory,	and	IO	chips.	Personal	computers.	Microcomputer	technology	gave	rise	to	a	new	class	ofgeneral-purpose	machines	called	personal	computers	(PCs),	which	are	intended	fora	single	user.	These	small,	inexpensive	computers	are	designed	to	sit	on	an	officedesk	or	fold	into	a
compact	form	to	be	carried.	The	more	powerful	desktop	com-puters	intended	for	scientific	computing	are	referred	to	as	workstations.	A	typical	PC	has	the	von	Neumann	organization,	with	a	microprocessor,	a	multimegabytemain	memory,	and	an	assortment	of	10	devices:	a	keyboard,	a	video	monitor	orscreen,	a	magnetic	or	optical	disk	drive	unit	for
high-capacity	secondary	memory,and	interface	circuits	for	connecting	the	PC	to	printers	and	to	other	computers.	Per-sonal	computers	have	proliferated	to	the	point	that,	in	the	more	developed	societ-ies,	they	are	present	in	most	offices	and	many	homes.	Two	of	the	main	applicationsof	PCs	are	word	processing,	where	personal	computers	have	assumed
and	greatlyexpanded	all	the	functions	of	the	typewriter,	and	data-processing	tasks	like	finan-cial	record	keeping.	They	are	also	used	for	entertainment,	education,	and	increas-ingly,	communication	with	other	computers	via	the	World	Wide	Web.	Personal	computers	were	introduced	in	the	mid-1970s	by	a	small	electronicskit	maker,	MITS	Inc.	[Augarten
1984].	The	MITS	Altair	computer	was	builtaround	the	Intel	8008,	an	early	8-bit	microprocessor,	and	cost	only	$395	in	kitform.	The	most	successful	personal	computer	family	was	the	IBM	PC	series	intro-duced	in	1981.	Following	the	precedent	set	by	earlier	IBM	computers,	it	quicklybecome	the	de	facto	standard	for	this	class	of	machine.	A	new	factor
also	aided	thestandardization	process—namely,	IBM's	decision	to	give	the	PC	what	came	to	becalled	an	open	architecture,	by	making	its	design	specifications	available	to	othermanufacturers	of	computer	hardware	and	software.	As	a	result,	the	IBM	PCbecame	very	popular,	and	many	versions	of	it—the	so-called	PC	clones—wereproduced	by	others,
including	startup	companies	that	made	the	manufacture	oflow-cost	PC	clones	their	main	business.	The	PC's	open	architecture	also	providedan	incentive	for	the	development	of	a	vast	amount	of	applicationspecific	softwarefrom	many	sources.	Indeed	a	new	software	industry	emerged	aimed	at	the	mass-production	of	low-cost,	self-contained	programs
aimed	at	specific	applications	ofthe	IBM	PC	and	a	few	other	widely	used	computer	families.	The	IBM	PC	series	is	based	on	Intel	Corp.'s	80X86	family	of	microprocessors,which	began	with	the	8086	microprocessor	introduced	in	1978	and	was	followedby	the	80286	(1983),	the	80386	(1986),	the	80486	(1989),	and	the	Pentium2	(1993)[Albert	and	Avnon
1993];	the	Pentium	II	appeared	in	1997.	The	IBM	PC	series	isalso	distinguished	by	its	use	of	the	MS/DOS	operating	system	and	the	Windowsgraphical	user	interface,	both	developed	by	Microsoft	Corp.	Another	popular	per-sonal	computer	series	is	Apple	Computer's	Macintosh,	introduced	in	1984	andbuilt	around	the	Motorola	680X0	microprocessor
family,	whose	evolution	from	the68000	microprocessor	(1979)	parallels	that	of	the	80X86/Pentium	[Farrell	1984|.In	1994	the	Macintosh	CPU	was	changed	to	a	new	microprocessor	known	as	thePowerPC.	Figure	1.22	shows	the	organization	of	a	typical	personal	computer	from	themid-1990s.	Its	legacy	from	earlier	von	Neumann	computers	is	apparent
—compareFigure	1.22	to	Figure	1.17.	At	the	core	of	this	computer	is	a	single-chip	micropro-cessor	such	as	the	Pentium	or	PowerPC.	As	we	will	see,	the	microprocessor's	inter-nal	(micro)	architecture	usually	contains	a	number	of	speedup	features	not	found	inits	predecessors.	A	system	bus	connects	the	microprocessui	to	a	main	memor)based	on
semiconductor	DRAM	technology	and	to	an	IO	subsystem.	A	separate	IObus,	such	as	the	industry	standard	PCI	(peripheral	component	interconnect)	"'local'"	41	CHAPTER	1Computing	andComputers	2A	legal	ruling	that	microprocessor	names	that	are	numbers	cannot	have	trademark	protection,	resulted	in	the80486	being	followed	by	a
microprocessor	called	the	Pentium	rather	than	the	80586.	42	SECTION	1.3The	VLSI	Era	Microprocessor	CPU	Cache	Bus	interface	unit	Main	memory	M	Secondary	(hard	disk)	memory	Videomonitor	Keyboard	Hard	diskcontrol	—r	Videocontrol	Communicationnetwork	Keyboardcontrol	UTI	T	IO	devices	Networkcontrol	IO	expansionslots	r	u	zr	'Li	2	IO
(local)	bus	Peripheral	(IO)	interface	control	unit	irT	System	bus	Figure	1.22	A	typical	personal	computer	system.	bus,	connects	directly	to	the	IO	devices	and	their	individual	controllers.	The	IO	busis	linked	to	the	system	bus,	to	which	the	microprocessor	and	memory	are	attachedvia	a	special	bus-to-bus	control	unit	sometimes	referred	to	as	a	bridge.
The	IOdevices	of	a	personal	computer	include	the	traditional	keyboard,	a	CRT-based	orflat-panel	video	monitor,	and	disk	drive	units	for	the	hard	and	flexible	(floppy)	diskstorage	devices	that	constitute	secondary	memory.	More	recent	additions	to	the	IOdevice	repertoire	include	drive	units	for	CD-ROMs	(compact	disc	read-only	mem-ories),	which	have
extremely	high	capacity	and	allow	sound	and	video	images	tobe	stored	and	retrieved	efficiently.	Other	common	audiovisual	IO	devices	in	per-sonal	computers	are	microphones,	loudspeakers,	video	scanners,	and	the	like,which	are	referred	to	as	multimedia	equipment.	Performance	considerations.	As	processor	hardware	became	much	less	expen-sive
in	the	1970s,	thanks	mainly	to	advances	in	VLSI	technology	(Figure	1.19),computer	designers	increased	the	use	of	complex,	multistep	instructions.	Thisreduces	N,	the	total	number	of	instructions	that	must	be	executed	for	a	given	task,since	a	single	complex	instruction	can	replace	several	simpler	ones.	For	example,	amultiply	instruction	can	replace	a
multiinstruction	subroutine	that	implements	mul-tiplication	by	repeated	execution	of	add	instructions.	Reducing	N	in	this	way	tendsto	reduce	overall	program	execution	time	T,	as	well	as	the	time	that	the	CPUspends	fetching	instructions	and	their	operands	from	memory.	The	same	advancesin	VLSI	made	it	possible	to	add	new	features	to	old
microprocessors,	such	as	newinstructions,	data	types,	instruction	sets,	and	addressing	modes,	while	retaining	theability	to	execute	programs	written	for	the	older	machines.	The	Intel	80X86/Pentium	series	illustrates	the	trend	toward	more	complexinstruction	sets.	The	1978-vintage	8086	microprocessor	chip,	which	contained	amere	20,000	transistors,
was	designed	to	process	16-bit	data	words	and	had	noinstructions	for	operating	on	floating-point	numbers	[Morse	et	al.	1978].	Twenty-five	years	later,	its	direct	descendant,	the	Pentium,	contained	over	3	million	transis-tors,	processed	32-bit	and	64-bit	words	directly,	and	executed	a	comprehensive	setof	floating-point	instructions	[Albert	and	Avnon
1993].	The	Pentium	accumulated	most	of	the	architectural	features	of	its	various	predecessors	in	order	to	enable	it	toexecute,	with	little	or	no	modification,	programs	written	for	earlier	80X86seriesmachines.	Reflecting	these	characteristics,	the	80X86,	680X0,	and	most	older	com-puter	series	have	been	called	complex	instruction	set	computers
(CISCs).3	By	the	1980s	it	became	apparent	that	complex	instructions	have	certain	disad-vantages	and	that	execution	of	even	a	small	percentage	of	such	instructions	cansometimes	reduce	a	computer's	overall	performance.	To	illustrate	this	condition,suppose	that	a	particular	microprocessor	has	only	fast,	simple	instructions,	each	ofwhich	requires	k
time	units,	to	execute.	Thus	the	microprocessor	can	execute	100instructions	in	100k	time	units.	Now	suppose	that	5	percent	of	the	instructions	areslow,	complex	instructions	requiring	2lk	time	units	each.	To	execute	an	averageset	of	100	instructions	therefore	requires	(5x21+	95)k	=	200k	time	units,	assum-ing	no	other	factors	are	involved.
Consequently,	the	5	percent	of	complex	instruc-tions	can,	as	in	this	particular	example,	double	the	overall	program	execution	time.	Thus	while	complex	instructions	reduce	program	size,	this	technology	does	notnecessarily	translate	into	faster	program	execution.	Moreover,	complex	instructionsrequire	relatively	complex	processing	circuits,	which
tend	to	put	CISCs	in	the	larg-est	and	most	expensive	IC	category.	These	drawbacks	were	first	recognized	by	JohnCocke	and	his	colleagues	at	IBM	in	the	mid-1970s,	who	developed	an	experimentalcomputer	called	801	that	aimed	to	achieve	very	fast	overall	performance	via	astreamlined	instruction	set	that	could	be	executed	extremely	fast	[Cocke	and
Mark-stein	1990].	The	801	and	subsequent	machines	with	a	similar	design	philosophyhave	been	called	reduced	instruction	set	computers	(RISCs).	A	number	of	commer-cially	successful	RISC	microprocessors	were	introduced	in	the	1980s,	including	theIBM	RISC	System/6000	and	SPARC,	an	"open"	microprocessor	developed	by	SunMicrosystems	and
based	on	RISC	research	at	the	University	of	California,	Berkeley[Patterson	1985].	Many	of	the	speedup	features	of	RISC	machines	have	found	theirway	into	other	new	computers,	including	such	CISC	microprocessors	as	the	Pen-tium.	Indeed,	the	term	RISC	is	often	used	to	refer	to	any	computer	with	an	instruc-tion	set	and	an	associated	CPU
organization	designed	for	very	high	performance:the	actual	size	of	the	instruction	set	is	relatively	unimportant.	A	computer's	performance	is	also	strongly	affected	by	other	factors	besidesits	instruction	set,	especially	the	time	required	to	move	instructions	and	databetween	the	CPU	and	main	memory	M	and,	to	a	lesser	extent,	the	time	required	tomove
information	between	M	and	IO	devices.	It	typically	takes	the	CPU	aboutfive	times	longer	to	obtain	a	word	from	M	than	from	one	of	its	internal	registers.This	difference	in	speed	has	existed	since	the	first	electronic	computers,	despitestrenuous	efforts	by	circuit	designers	to	develop	memory	devices	and	processor-memory	interface	circuits	that	are	fast
enough	to	keep	up	with	the	fastest	micro-processors.	Indeed	the	CPU-M	speed	disparity	has	become	such	a	feature	of	stan-dard	(von	Neumann)	computers	that	is	sometimes	referred	to	as	the	von	Neumannbottleneck.	RISC	computers	usually	limit	access	to	main	memory	to	a	few	loadand	store	instructions;	other	instructions,	including	all	data-
processing	and	pro-gram-control	instructions,	must	have	their	operands	in	CPU	registers.	This	so43	CHAPTER	IComputing	andComputers	3The	public	became	aware	of	CISC	complexity	when	a	design	flaw	affecting	the	floating-point	divisioninstruction	of	the	Pentium	was	discovered	in	1994.	The	cost	to	Intel	of	this	bug.	including	the	replacementcost
of	Pentium	chips	already	installed	in	PCs.	was	about	$475	million.	44	called	load-store	architecture	is	intended	to	reduce	the	impact	of	the	von	Neusection	3	mann	bottleneck	by	reducing	the	total	number	of	the	memory	accesses	made	by	The	VLSI	Era	the	CPU.	Performance	measures.	A	rough	indication	of	CPU	speed	is	the	number	of"basic"
operations	that	it	can	perform	per	unit	of	time.	A	typical	basic	operation	isthe	fixed-point	addition	of	the	contents	of	two	registers	Rl	and	R2,	as	in	the	sym-bolic	instruction	Rl	:=R1	+R2	Such	operations	are	timed	by	a	regular	stream	of	signals	(ticks	or	beats)	issued	by	acentral	timing	signal,	the	system	clock.	The	speed	of	the	clock	is	its	frequency
/measured	in	millions	of	ticks	per	second;	the	units	for	this	are	megahertz	(MHz).Each	tick	of	the	clock	triggers	a	basic	operation;	hence	the	time	required	to	executethe	operation	is	1//microseconds	((is).	This	value	is	called	the	clock	cycle	or	clockperiod	Tdock.	For	example,	a	computer	clocked	at	250	MHz	can	perform	one	basicoperation	in	the	clock
period	Tdock	=	1/250	=	0.004	(is.	Complicated	operationssuch	as	division	or	operations	on	floating-point	numbers	can	require	more	than	oneclock	cycle	to	complete	their	execution.	Generally	speaking,	smaller	electronic	devices	operate	faster	than	larger	ones,so	the	increase	in	IC	chip	density	discussed	above	has	been	accompanied	by	asteady,	but
less	dramatic,	increase	in	clock	speed.	For	example,	from	1981	to	1995microprocessor	clock	speeds	increased	from	about	10	MHz	to	100	MHz.	Clockspeeds	of	1	gigahertz	(1	GHz	or	1000	MHz)	and	beyond	are	feasible	using	fasterversions	of	current	CMOS	technology.	It	might	therefore	seem	possible	to	achieveany	desired	processor	speed	simply	by
increasing	the	CPU	clock	frequency.	How-ever,	the	rate	at	which	clock	frequency	is	increasing	due	to	IC	technology	improve-ments	is	relatively	slow	and	may	be	approaching	limits	determined	by	the	speed	oflight,	power	dissipation,	and	similar	physical	considerations.	Extremely	fast	cir-cuits	also	tend	to	be	very	expensive	to	manufacture.	The	CPU's
processing	of	an	instruction	involves	several	steps,	each	of	whichrequires	at	least	one	clock	cycle:	1.	Fetch	the	instruction	from	main	memory	M.	2.	Decode	the	instruction's	opcode.	3.	Load	(read)	from	M	any	operands	needed	unless	they	are	already	in	CPU	regis-ters.	4.	Execute	the	instruction	via	a	register-to-register	operation	using	an
appropriatefunctional	unit	of	the	CPU,	such	as	a	fixed-point	adder.	5.	Store	(write)	the	results	in	M	unless	they	are	to	be	retained	in	CPU	registers.	The	fastest	instructions	have	all	their	operands	in	CPU	registers	and	can	be	exe-cuted	by	the	CPU	in	a	single	clock	cycle,	so	steps	1	to	3	all	take	one	clock	cycle.The	slowest	instructions	require	multiple
memory	accesses	and	multiple	register-to-register	operations	to	complete	their	execution.	Consequently,	measures	ofinstruction	execution	performance	are	based	on	average	figures,	which	are	usuallydetermined	experimentally	by	measuring	the	run	times	of	representative	or	bench-mark	programs.	The	more	representative	the	programs	are,	that	is,
the	more	accu-rately	they	reflect	real	applications,	the	better	the	performance	figures	they	provide.	Suppose	that	execution	of	a	particular	benchmark	program	or	set	(suite)	ofsuch	programs	Q	on	a	given	CPU	takes	T	seconds	and	involves	the	execution	of	atotal	of	N	machine	(object)	instructions.	Here	N	is	the	actual	number	of	instructionsexecuted,
including	repeated	executions	of	the	same	instruction;	it	is	not	the	num-ber	of	instructions	appearing	in	Q.	As	far	as	the	typical	computer	user	is	concerned,the	key	performance	goal	is	to	minimize	the	total	program	execution	time	T.	WhileT	can	be	determined	accurately	only	by	measurement	of	'J+\	=(.v,	+	*/y,)/2	Here;	=	1,	2,	3,	...,	and	>•„	is	an
initial	approximation	to	x]f2.	Assuming	that	IAS	pro-cesses	real	(floating-point)	numbers	directly,	construct	a	program	in	the	style	of	Figure	1.15	to	calculate	the	square	root	of	a	given	positive	number	x	according	to	thisformula.	1.20.	Early	computer	literature	describes	the	IAS	and	other	first-generation	computers	as"parallel."	unlike	some	of	their
predecessors.	In	what	sense	was	the	IAS	a	parallel	com-puter?	What	forms	of	parallelism	do	modern	computers	have	that	are	lacking	in	theIAS?	1.21.	The	IAS	had	no	call	or	return	instructions	designed	for	transferring	control	betweenprograms,	(a)	Describe	how	call	and	return	can	be	programmed	using	the	IAS's	59	CHAPTER	1Computing
andComputers	60	original	instruction	set.	(b)	What	feature	would	you	suggest	adding	to	the	IAS	to	support	call	and	return	operations?SECTION	1.5Problen^	1-22.	Construct	both	a	Polish	expression	and	a	stack	program	of	the	kind	given	in	Figure	1.16a	to	evaluate	the	following	expression:	f:=(4x(a2	+	b	+	c)-d)/(e+fxg)	(1.14)	1.23.	From	the	data
presented	in	Figure	1.19,	estimate	how	long	it	takes,	on	average,	for	thedensity	of	leading-edge	ICs	to	double.	This	doubling	rate,	which	has	remained	remark-ably	constant	over	the	years,	is	referred	to	as	Moore's	law,	after	Gordon	E.	Moore,	acofounder	of	Intel	Corp.,	who	formulated	it	in	the	1960s.	1.24.	Using	the	circuit	of	Figure	1.20	as	an
illustration,	discuss	and	justify	the	followinggeneral	properties	of	CMOS	circuits:	(a)	Power	consumption	is	very	low	and	most	ofit	occurs	when	the	circuit	is	changing	state	(switching),	(b)	The	logic	signals	0	and	1correspond	to	electrical	voltage	levels,	(c)	The	subcircuits	that	constitute	logic	gatesdraw	their	power	directly	from	the	global	power
supply	rather	than	from	the	external(primary)	input	signals:	hence	the	gates	perform	signal	amplification.	1.25.	The	CMOS	zero-detection	circuit	of	Figures	1.20	and	1.21	can	be	implemented	as	asingle	four-input	logic	gate.	Identify	the	gate	in	question	and	redesign	the	circuit	in	themore	compact	single-gate	form.	1.26.	Design	a	CMOS	ones-detection
circuit	in	the	multigate	style	of	Figure	1.20.	It	shouldproduce	the	output	z	=	1	if	and	only	if	x0x]x2x3	-	1111.	Give	both	a	transistor	(switch-level)	circuit	and	a	gate-level	circuit	for	your	design.	1.27.	Discuss	the	impact	of	developments	in	computer	hardware	technology	on	the	evolutionof	each	of	the	following:	(a)	the	logical	complexity	of	the	smallest
replaceable	compo-nents;	(b)	the	operating	speed	of	the	smallest	replaceable	components;	and	(c)	the	for-mats	used	for	data	and	instruction	representation.	1.28.	Define	the	terms	software	compatibility	and	hardware	compatibility.	What	role	havethey	played	in	the	evolution	of	computers?	1.29.	Identify	and	briefly	describe	three	distinct	ways	in	which
parallelism	can	be	introducedinto	the	microarchitecture	of	a	computer	in	order	to	increase	its	overall	instruction	ex-ecution	speed.	1.30.	Compare	and	contrast	the	IAS	and	PowerPC	processors	in	terms	of	the	complexity	ofwriting	assembly-language	programs	for	them.	Use	the	vector	addition	programs	ofFigures	1.15	and	1.27	to	illustrate	your
answer.	1.31.	A	popular	microprocessor	of	the	1970s	was	the	Intel	8085,	a	direct	ancestor	of	the80X86/Pentium	series,	which	has	the	structure	shown	in	Figure	1.32.	The	data	wordsize	in	the	CPU	and	M	is	8	bits,	while	the	address	size	is	16	bits.	Because	the	8085'sIC	package	has	only	40	pins,	the	lines	AD	for	transmitting	addresses	and	data
betweenthe	CPU	and	M	are	shared	(multiplexed)	as	indicated.	AD	is	used	to	attach	IO	devicesas	well	as	M	to	the	8085;	there	is	also	a	separate	serial	(two	line)	IO	port.	The	8085	hasabout	70	different	instruction	types.	Its	most	complex	arithmetic	instructions	are	addi-tion	and	subtraction	of	8-bit	fixed-point	(binary	and	decimal)	numbers.	There	are
six8-bit	registers	designated	B,	C,	D,	E,	H,	and	L,	which,	with	the	accumulator	A,	form	ageneral-purpose	CPU	register	file.	The	register-pairs	BC,	DE,	and	HL	serve	as	16-bitaddress	registers.	A	program	counter	PC	maintains	the	address	of	the	next	instructionbyte	required	from	M	in	the	usual	manner.	The	8085	also	has	stack	pointer	SP	thatpoints	to
the	top	of	a	user-defined	stack	area	in	M.	(a)	What	is	the	maximum	capacity	Serial	10	devices	Li	Serial10	port	B	C	D	E	H	L	*—8—►	«—	8—»•	Data/	AddressAddress	low	high	Control	System	bus(to	M	and	10)	8-bit	internal	data	bus	Accumu-lator	A	Statusregister	SR	8-bit	ALU	8/16-bit	register	file	Figure	1.32	Structure	of	the	Intel	8085	microprocessor.
Instructionregister	IR	Programcontrol	Stack	pointer	SP	Program	counter	PC	61	CHAPTER	1Computing	andComputers	Location	Instruction	Comment	ADDEC:	LOOP:	LXI	D,	NUM1	LXI	H,	NUM2	MVI	C,	16	LDAX	D	ADC	M	DAA	MOV	M,A	DCX	D	DCX	H	DCR	C	JNZ	LOOP	+	16	Initialize	address:	DE	:=	NUM1	+	16.+	16	Initialize	address:	HL	:=	NUM2	+
16.	Initialize	count:	C	:=	16.	Load	data:	D	:=	M(DE).	A	:=	A	+	CY	+	M(HL).	Update	CY	flag.	Convert	sum	in	A	to	decimal.	Store	data:	M(HL)	:=	A.	Decrement	address:	DE	:=	DE	-	1.	Decrement	address:	HL	:=	HL	-	1.	Decrement	count:	C	:=	C	-	1.	Update	Z	flag.	Jump	to	LOOP	if	Z	*	1.	Figure	1.33	An	8085	program	to	add	two	32-digit	decimal	integers.	of
the	8085's	main	memory?	(b)	What	is	the	size	of	PC?	(c)	What	is	the	purpose	of	SP?(d)	Identify	three	common	features	of	more	recent	microprocessors	that	the	8085	lacks.	1.32.	Consider	the	Intel	8085	described	in	the	preceding	problem.	A	taste	of	its	software	canbe	found	in	Figure	1.33,	which	lists	a	program	ADDEC	written	in	8085	assembly	lan-
guage	that	performs	the	addition	of	two	long	(n	digit)	decimal	numbers	NUM1	andNUM2.	The	numbers	are	added	two	digits	(8	bits)	at	a	time	using	the	instructions	ADC(add	with	carry)	and	DAA	(decimal	adjust	accumulator).	ADC	takes	a	byte	from	Mand,	treating	it	as	an	8-bit	binary	number,	adds	it	and	a	carry	bit	CY	to	the	contents	of	SECTION
1.6References	62	the	A	register.	DAA	then	changes	the	binary	sum	in	A	to	binary-coded	decimal	form.	This	calculation	uses	several	flag	bits	of	the	status	register	SR:	the	carry	flag	CY,	whichis	set	to	1	(0)	whenever	the	9th	bit	resulting	from	an	8-bit	addition	is	1	(0);	and	the	zeroflag	Z,	which	is	set	to	1	(0)	when	the	result	of	an	arithmetic	instruction
such	as	add	ordecrement	is	0	(non-0),	(a)	From	the	information	given	here,	determine	the	size	n	ofthe	numbers	being	added	and	the	(symbolic)	location	in	M	where	the	sum	NUM1	+NUM2	is	stored,	(b)	Ignoring	the	size	of	the	8085's	instruction	set,	would	you	classifyit	as	CISC	or	RISC?	Justify	your	answers.	1.33.	The	performance	of	a	100	MHz
microprocessor	P	is	measured	by	executing10,000,000	instructions	of	benchmark	code,	which	is	found	to	take	0.25	s.	What	are	thevalues	of	CPl	and	MIPS	for	this	performance	experiment?	Is	P	likely	to	be	superscalar?	1.34.	Suppose	that	a	single-chip	microprocessor	P	operating	at	a	clock	frequency	of	50	MHzis	replaced	by	a	new	model	P	,	which	has
the	same	architecture	as	P	but	has	a	clockfrequency	of	75	MHz.	(a)	If	P	has	a	performance	rating	of	p	MIPS	for	a	particularbenchmark	program	Q,	what	is	the	corresponding	MIPS	rating	p	for	P	?	(b)	P	takes250	s	to	execute	Q	in	a	particular	personal	computer	system	C.	On	replacing	P	by	P	inC,	the	execution	time	of	Q	drops	only	to	220	s.	Suggest	a
possible	reason	for	this	dis-appointing	performance	improvement.	1.35.	{a)	What	are	the	usual	definitions	of	the	terms	CISC	and	RISC?	Identify	two	key	archi-tectural	features	that	distinguish	recent	RISC	and	CISC	machines,	(b)	When	develop-ing	the	RISC/6000,	the	direct	predecessor	of	the	PowerPC,	IBM	viewed	the	word	RISCto	mean	"reduced
instruction	set	cycles."	Explain	why	this	meaning	might	be	more	ap-propriate	for	the	PowerPC	than	the	usual	one.	1.6REFERENCES	1.	Albert,	D.	and	D.	Avnon.	"Architecture	of	the	Pentium	Microprocessor."	IEEE	Micro,vol.	13	(June	1993)	pp.	11-21.	2.	Augarten,	S.	Bit	by	Bit:	An	Illustrated	History	of	Computers.	New	York:	Ticknor	andFields,	1984.	3.
Barwise,	J.	and	J.	Etchemendy.	Turing's	World	3.0:	An	Introduction	to	ComputabilityTheory.	Stanford,	CA:	CSLI	Publications,	1993.	4.	Boyer,	C.	B.	A	History	of	Mathematics.	2nd	ed.	New	York:	Wiley,	1989.	5.	Braun,	E.	and	S.	MacDonald.	Revolution	in	Miniature.	The	History	and	Impact	of	Semi-conductor	Electronics.	2nded.	Cambridge,	England:
Cambridge	University	Press,	1982.	6.	Burks,	A.	W.,	H.	H.	Goldstine,	and	J.	von	Neumann.	"Preliminary	Discussion	of	theLogical	Design	of	an	Electronic	Computing	Instrument."	Report	prepared	for	U.S.	ArmyOrdnance	Department,	1946.	(Reprinted	in	Ref.	26,	vol.	5,	pp.	34-79.)	7.	Cocke,	J.	and	V.	Markstein.	"The	Evolution	of	RISC	Technology	at	IBM."
IBM	Journalof	Research	and	Development,	vol.	34	(January	1990)	pp.	4-11.	8.	Cormen,	T.	H.,	C.	E.	Leiserson,	and	R.	L.	Rivest.	Introduction	to	Algorithms.	MIT	Press,Cambridge,	MA,	and	McGraw-Hill,	New	York,	1990.	9.	Diefendorf,	K.,	R.	Oehler,	and	R.	Hochsprung.	"Evolution	of	the	PowerPC	Architec-ture."	IEEE	Micro,	vol.	14	(April	1994)	pp.	34-^9.
10.	Estrin,	G.	"The	Electronic	Computer	at	the	Institute	for	Advanced	Studies."	Mathemat-ical	Tables	and	Other	Aids	to	Computation,	vol.	7	(April	1953)	pp.	108-14.	11.	Farrell,	J.	J.	"The	Advancing	Technology	of	Motorola's	Microprocessors	and	Micro-computers."	IEEE	Micro,	vol.	4	(October	1984)	pp.	55-63.	12.	Garey,	M.	R.	and	D.	S.	Johnson.
Computers	and	Intractability.	San	Francisco:	W.	H.Freeman,	1979.	13.	Goldstine,	H.	H.	and	J.	von	Neumann.	"Planning	and	Coding	Problems	for	an	ElectronicComputing	Instrument."	Part	II,	vols.	1	to	3.	Three	reports	prepared	for	U.S.	Army	Ord-nance	Department,	1947-1948.	(Reprinted	in	Ref.	26,	vol.	5,	pp.	80-235.)	14.	Hwang,	K.	Advanced
Computer	Architecture.	New	York:	McGraw-Hill,	1993.	15.	Morrison,	P.	and	E.	Morrison	(eds.).	Charles	Babbage	and	His	Calculating	Engines.New	York:	Dover,	1961.	16.	Morse,	S.	P.	et	al.	"Intel	Microprocessors:	8008	to	8086."	Santa	Clara,	CA:	Intel,	1978.(Reprinted	in	Ref.	24,	pp.	615-46.)	17.	Motorola	Inc.	PowerPC	601	RISC	Microprocessor	User's
Manual.	Phoenix,	AZ,	1993.(Also	published	by	IBM	Microelectronics,	Essex	Junction,	VT,	1993).	18.	O'Connor,	J.	M.	and	M.	Tremblay.	"picoJava-I:	The	Java	Virtual	Machine	in	Hard-ware."	IEEE	Micro,	vol.	17	(March/April	1997)	pp.	45-53.	19.	Patterson,	D.	"Reduced	Instruction	Set	Computers."	Communications	of	the	ACM,	vol.28,	(January	1985)	pp.
8-21.	20.	Poppelbaum,	W.	J.	et	al.	"Unary	Processing."	Advances	in	Computers,	vol.	26,	ed.	M.Yovits.	New	York:	Academic	Press,	1985,	pp.	47-92.	21.	Prasad,	N.	S.	IBM	Mainframes:	Architecture	and	Design.	New	York:	McGraw-Hill,1989.	22.	Randell,	B.	(ed.)	The	Origins	of	Digital	Computers:	Selected	Papers.	3rd	ed.	Berlin:Springer-Verlag,	1982.	23.
Russell,	R.	M.	"The	CRAY-1	Computer	System."	Communications	of	the	ACM,	vol.	21(January	1978),	pp.	63-78.	(Reprinted	in	Ref.	24,	pp.	743-52.)	24.	Siewiorek,	D.	P.,	C.	G.	Bell,	and	A.	Newell.	Computer	Structures:	Readings	and	Exam-ples.	New	York:	McGraw-Hill,	1982.	25.	Swade,	D.	D.	"Redeeming	Charles	Babbage's	Mechanical	Computer."
Scientific	Amer-ican,	vol.	268	(February	1993)	pp.	86-91.	26.	von	Neumann,	J.	Collected	Works,	ed.	A.	Taub,	6	vols.	New	York:	Pergamon,	1963.	27.	Weiss,	S.	and	J.	E.	Smith.	Power	and	PowerPC.	San	Francisco,	CA:	Morgan	Kaufmann,1994.	28.	Weste,	N.	and	K.	Eshragian.	Principles	of	CMOS	VLSI	Design.	2nd	ed.	Reading,	MA:Addison-Wesley,	1992.
29.	Wilkes,	M.	V.	and	J.	B.	Stringer.	"Microprogramming	and	the	Design	of	Control	Cir-cuits	in	an	Electronic	Digital	Computer."	Proc.	Cambridge	Phil.	Soc,	pt.	2,	vol.	49(April	1953)	pp.	230-38.	(Reprinted	in	Ref.	24,	pp.	158-63.)	63	CHAPTER	1	Computing	andComputers	CHAPTER	2	Design	Methodology	This	chapter	views	the	design	process	for
digital	systems	at	three	basic	levels	ofabstraction:	the	gate,	the	register,	and	the	processor	levels.	It	discusses	the	natureof	the	design	process,	examines	design	at	the	register	and	processor	levels	in	detail,and	briefly	introduces	computer-aided	design	(CAD)	and	analysis	methods.	2.1	SYSTEM	DESIGN	A	computer	is	an	example	of	a	system,	which	is
defined	informally	as	a	collec-tion—often	a	large	and	complex	one—of	objects	called	components,	that	are	con-nected	to	form	a	coherent	entity	with	a	specific	function	or	purpose.	The	functionof	the	system	is	determined	by	the	functions	of	its	components	and	how	the	compo-nents	are	connected.	We	are	interested	in	information-processing	systems
whosefunction	is	to	map	a	set	A	of	input	information	items	(a	program	and	its	data,	forexample)	into	output	information	B	(the	results	computed	by	the	program	acting	onthe	data).	The	mapping	can	be	expressed	formally	by	a	mathematical	function/from	A	to	B.	If/maps	element	a	of	A	onto	element	b	of	B,	we	write	b	=	/(a)	or	b	:=f(a).	We	also	restrict
membership	of	A	and	B	to	digital	or	discrete	quantities,	whosevalues	are	defined	only	at	discrete	points	of	time.	2.1.1	System	Representation	A	useful	way	of	modeling	a	system	is	a	graph.	A	(directed)	graph	consists	of	aset	of	objects	V	=	{v,^^,...^,,}	called	nodes	or	vertices	and	a	set	of	edges	Ewhose	members	are	(ordered)	pairs	of	nodes	taken	from
the	set	{(vl,v2),(V!,v3),...,(vn	_,,v„)}of	all	such	pairs.	The	edge	e	=	(v,-,yp	joins	or	connects	nodev,	to	node	v.-.	A	graph	is	often	defined	by	a	diagram	in	which	nodes	are	repre-	64	sented	by	circles,	dots,	or	other	symbols	and	edges	are	represented	by	lines:	thisdiagram	is	synonymous	with	the	graph.	The	ordering	implied	by	the	notation(v,,v)	may	be
indicated	in	the	diagram	by	an	arrowhead	pointing	from	v,	to	v	as,for	instance,	in	Figure	2.1.	The	systems	of	interest	comprise	two	classes	of	objects:	a	set	of	information-processing	components	C	and	a	set	of	lines	S	that	carry	information	signalsbetween	components.	In	modeling	the	system	by	a	graph	G,	we	associate	C	withthe	nodes	of	G	and	S	with
the	edges	of	G;	the	resulting	graph	is	often	called	ablock	diagram.	This	name	comes	from	the	fact	that	it	is	convenient	to	draw	eachnode	(component)	as	a	block	or	box	in	which	its	name	and/or	its	function	can	bewritten.	Thus	the	various	diagrams	of	computer	structures	presented	in	Chapter	1—Figure	1.29,	for	instance—are	block	diagrams.	Figure
2.2	shows	a	block	diagramrepresenting	a	small	gate-level	logic	circuit	called	an	EXCLUSIVE-OR	or	modulo-2adder.	This	circuit	has	the	same	general	form	as	the	more	abstract	graph	of	Fig-ure	2.1.	65	CHAPTER	2	Design	Methodology	Structure	versus	behavior.	Two	central	properties	of	any	system	are	its	struc-ture	and	behavior;	these	very	general
concepts	are	often	confused.	We	define	thestructure	of	a	system	as	the	abstract	graph	consisting	of	its	block	diagram	with	nofunctional	information.	Thus	Figure	2.1	shows	the	structure	of	the	small	system	ofFigure	2.2.	A	structural	description	merely	names	components	and	defines	theirinterconnection.	A	behavioral	description,	on	the	other	hand,
enables	one	to	deter-mine	for	any	given	input	signal	a	to	the	system,	the	corresponding	output/(a).	Wedefine	the	function/to	be	the	behavior	of	the	system.	The	behavior/may	be	repre-sented	in	many	different	ways.	Figure	2.3	shows	one	kind	of	behavioral	descriptionfor	the	logic	circuit	of	Figure	2.2.	This	tabulation	of	all	possible	combinations	ofinput-
output	values	is	called	a	truth	table.	Another	description	of	the	sameEXCLUSIVE-OR	behavior	can	be	written	in	terms	of	mathematical	equations	asfollows,	noting	that/(a)	=/(x,^c2):	/(0,0)	=	0	/(0,1)=1	/(1,0)	=	1	/(U)	=	0	Figure	2.1	A	graph	with	eight	nodes	and	nine	edges.	66	SECTION	2.1System	Design	AND	*1	NOT	•	OR	NOT	AND	p	x2	o	"	»o	x,	©
x2	Figure	2.2	A	block	diagram	representing	an	EXCLUSIVE-OR	logic	circuit.	The	structural	and	behavioral	descriptions	embodied	in	Figures	2.1	and	2.3	areindependent:	neither	can	be	derived	from	the	other.	The	block	diagram	of	Figure2.2	serves	as	both	a	structural	and	behavioral	description	for	the	logic	circuit	inquestion,	since	from	it	we	can
derive	Figures	2.1	and	2.3.	In	general,	a	block	diagram	conveys	structure	rather	than	behavior.	For	exam-ple,	some	of	the	block	diagrams	of	computers	in	Chapter	1	identify	blocks	as	beingarithmetic-logic	units	or	memory	circuits.	Such	functional	descriptions	do	notcompletely	describe	the	behavior	of	the	components	in	question;	therefore,	we	can-
not	deduce	the	behavior	of	the	system	as	a	whole	from	the	block	diagram.	If	weneed	a	more	precise	description	of	system	behavior,	we	generally	supply	a	separatenarrative	text,	or	a	more	formal	description	such	as	a	truth	table	or	a	list	of	equa-tions.	Hardware	description	languages.	As	we	have	seen,	we	can	fully	describe	asystem's	structure	and
behavior	by	means	of	a	block	diagram—the	term	schematicdiagram	is	also	used—in	which	we	identify	the	functions	of	the	components.	Wecan	convey	the	same	detailed	information	by	means	of	a	hardware	description	lan-guage	(HDL),	a	format	that	resembles	(and	is	usually	derived	from)	a	high-levelprogramming	language	such	as	Ada	or	C.	The
construction	of	such	description	lan-guages	can	be	traced	back	at	least	as	far	as	Babbage	[Morrison	and	Morrison1961].	Babbage's	notation,	of	which	he	was	very	proud,	centered	around	the	use	ofspecial	symbols	such	as	—>	to	represent	the	movement	of	mechanical	components.In	modern	times	Claude	E.	Shannon	[Shannon	1938]	introduced
Boolean	algebra	Input	a	Output	x\	x2	fia)	0	0	0	0	1	1	1	0	1	1	1	0	Figure	2.3	Truth	table	for	the	EXCLUSIVE-OR	function.	as	a	concise	and	rigorous	descriptive	method	for	logic	circuits.	Beginning	in	the1950s,	academic	and	industrial	researchers	developed	many	ad	hoc	HDLs.	Theseeventually	evolved	into	a	few	widely	used	languages,	notably	VHDL
and	Verilog,1which	were	standardized	in	the	1980s	and	90s	[Smith	1996;	Thomas	and	Moorby1996].	Hardware	description	languages	such	as	VHDL	have	several	advantages.	Theycan	provide	precise,	technology-independent	descriptions	of	digital	circuits	at	vari-ous	levels	of	abstraction,	primarily	the	gate	and	register	levels.	Consequently,	theyare
widely	used	for	documentation	purposes.	Like	programming	languages,	HDLscan	be	processed	by	computers	and	so	are	suitable	for	use	with	computer-aideddesign	(CAD)	programs	which,	as	discussed	later,	play	an	important	role	in	thedesign	process.	For	example,	an	HDL	description	of	a	processor	P	can	beemployed	to	simulate	the	behavior	of	P
before	all	the	details	of	its	design	havebeen	specified.	On	the	negative	side,	HDL	descriptions	are	often	long	and	verbose;they	lack	the	intuitive	appeal	and	rapid	insights	that	circuit	diagrams	and	less	for-mal	descriptive	methods	provide.	67	CHAPTER	2	Design	Methodology	EXAMPLE	2.1	VHDL	DESCRIPTION	OF	A	HALF	ADDER.	To	illustrate	the	use
of	HDLs,	we	give	in	Figure	2.4a	a	VHDL	description	of	a	simple	logic	componentknown	as	a	half	adder.	Its	purpose	is	to	add	two	1-bit	binary	numbers	x	and	y	to	form	a2bit	result	consisting	of	a	sum	bit	sum	and	a	carry	bit	carry.	For	example,	if	x	=	y=	1.the	half	adder	should	produce	carry	=	1,	sum	=	0,	corresponding	to	the	binary	number10,	that	is,
two.	A	VHDL	description	has	two	main	parts:	an	entity	part	and	an	architecture	part.The	entity	part	is	a	formal	statement	of	the	system's	structure	at	the	highest	level,	thatis,	as	a	single	component.	It	describes	the	system's	interface,	which	is	the	"face"	pre-sented	to	external	devices	but	says	nothing	about	the	system's	behavior	or	its
internalstructure.	In	this	example	the	entity	statement	gives	the	half	adder's	formal	namehalf_adder	and	the	names	assigned	to	its	input-output	(IO)	signals;	10	signals	arereferred	to	in	VHDL	by	their	connection	terminals	or	ports.	Inputs	and	outputs	are	entity	half_adder	is	port	(x.y:	in	bit;	sum.	earn-,	out	bit);end	half	judder;	architecture	behavior	of
half_adder	isbegin	sum	alpha);	NAND2:	nand_gate	port	map	(d	=>	alpha,	e	=>	alpha./=>	carry);end	structure:	(a)	69	CHAPTER	2	Design	Methodology	xor_circuitXOR	c	nand_gateNAND1	/	half_adder	alpha	c	nand_gateNAND2	/	Figure	2.5	Half	adder:	(a)	structural	VHDL	description;	(b)	block	diagram.	states	that	half_adder	has	a	component	called
NAND1.	which	is	of	type	nand_gate	andhas	its	d,	e,	and/ports	(terminals)	mapped	(connected)	to	the	signals	x,	v,	and	alpha,respectively.	2.1.2	Design	Process	Given	a	system's	structure,	the	task	of	determining	its	function	or	behavior	istermed	analysis.	The	converse	problem	of	determining	a	system	structure	thatexhibits	a	given	behavior	is	design	or
synthesis.	Design	problem.	We	can	now	state	in	broad	terms	the	problem	facing	the	com-puter	designer	or,	indeed,	any	system	designer.	Given	a	desired	range	of	behavior	and	a	set	of	available	components,	determine	astructure	(design)	formed	from	these	components	that	achieves	the	desired	behav-ior	with	acceptable	cost	and	performance.	While
assuring	the	correctness	of	the	new	design's	behavior	is	the	overriding	goalof	the	design	process,	other	typical	requirements	are	to	minimize	cost	as	measured	70	SECTION	2.1System	Design	by	the	cost	of	manufacture	and	to	maximize	performance	as	measured	by	the	speedof	operation.	There	are	some	other	performance-	and	cost-related
constraints	to	satisfy	such	as	high	reliability,	low	power	consumption,	and	compatibility	with	exist-ing	systems.	These	multiple	objectives	interact	in	poorly	understood	ways	thatdepend	on	the	complexity	and	novelty	of	the	design.	Despite	careful	attention	to	detail	and	the	assistance	of	CAD	tools,	the	initialversions	of	a	new	system	often	fail	to	meet
some	design	objective,	sometimes	insubtle	and	hard-to-detect	ways.	This	failure	can	be	attributed	to	incomplete	specifi-cations	for	the	design	(some	mode	of	behavior	was	overlooked),	errors	made	byhuman	designers	or	their	CAD	tools	(which	are	also	ultimately	due	to	humanerror),	and	unanticipated	interactions	between	structure,	performance,	and
cost.	Forexample,	increasing	a	system's	speed	to	a	desired	level	can	make	the	cost	unac-ceptably	high.	The	complexity	of	computer	systems	is	such	that	the	design	problem	must	bebroken	down	into	smaller,	easier	tasks	involving	various	classes	of	components.These	smaller	problems	can	then	be	solved	independently	by	different	designers	ordesign
teams.	Each	major	design	step	is	often	implemented	via	the	multistep	oriterative	process	depicted	by	a	flowchart	in	Figure	2.6.	An	initial	design	is	created,perhaps	in	ad	hoc	fashion,	by	adapting	an	existing	design	of	a	similar	system.	Theresult	is	then	evaluated	to	see	if	it	meets	the	relevant	design	objectives.	If	not,	thedesign	is	revised	and	the	result
reevaluated.	Many	iterations	through	the	redesignand	evaluation	steps	of	Figure	2.6	may	be	necessary	to	obtain	a	satisfactory	design.	Computer-aided	design.	The	emergence	of	powerful	and	inexpensive	desktopcomputers	with	good	graphics	interfaces	provides	designers	with	a	range	of	pro-grams	to	support	their	design	tasks.	CAD	tools	are	used	to
automate,	at	least	in	(Begin	J	Construct	aninitial	design	Evaluate	its	costand	performance	Modify	the	designto	meet	the	goals	Figure	2.6	Flowchart	of	an	iterativedesign	process.	part,	the	more	tedious	design	and	evaluation	steps	and	contribute	in	three	importantways	to	the	overall	design	process.	•	CAD	editors	or	translators	convert	design	data	into
forms	such	as	HDL	descrip-tions	or	schematic	diagrams,	which	humans,	computers,	or	both	can	efficientlyprocess.	•	Simulators	create	computer	models	of	a	new	design,	which	can	mimic	thedesign's	behavior	and	help	designers	determine	how	well	the	design	meets	vari-ous	performance	and	cost	goals.	•	Synthesizers	automate	the	design	process
itself	by	deriving	structures	that	imple-ment	all	or	part	of	some	design	step.	Editing	is	the	easiest	of	these	three	tasks,	and	synthesis	the	most	difficult.Some	synthesis	methods	incorporate	exact	or	optimal	algorithms	which,	even	ifeasy	to	program	into	CAD	tools,	often	demand	excessive	amounts	of	computingresources.	Many	synthesis	approaches	are
therefore	based	on	trial-and	error	meth-ods	and	experience	with	earlier	designs.	These	computationally	efficient	but	inex-act	methods	are	called	heuristics	and	form	the	basis	of	most	practical	CA©	t»«ls.	Design	levels.	The	design	of	a	complex	system	such	as	a	computer	is	carriedout	at	several	levels	of	abstraction.	Three	such	levels	are	generally
recognized	incomputer	design,	although	they	are	referred	to	by	various	different	names	in	the	lit-erature:	•	The	processor	level,	also	called	the	architecture,	behavior,	or	system	level.	•	The	register	level,	also	called	the	register-transfer	level	(RTL).	•	The	gate	level,	also	called	the	logic	level.	As	Figure	2.7	indicates	we	are	naming	each	level	for	a	key
component	treated	asprimitive	or	indivisible	at	that	level	of	abstraction.	The	processor	level	correspondsto	a	user's	or	manager's	view	of	a	computer.	The	register	level	is	approximatelythe	level	of	detail	seen	by	a	programmer.	The	gate	level	is	primarily	the	concern	ofthe	hardware	designer.	These	three	design	levels	also	correspond	roughly	to
themajor	subdivisions	of	integrated-circuit	technology	into	VLSI,	MSI,	and	SSI	com-ponents.	The	boundaries	between	the	levels	are	far	from	clear-cut,	and	it	is	com-mon	to	encounter	descriptions	that	mix	components	from	more	than	one	level.	71	CHAPTER	2	Design	Methodology	It	Information	Level	Components	density	units	Time	units	Gate	Logic
gates,	flip-flops.	SSI	Bits	10-'2to	10"9s	Register	Registers,	counters,combinational	circuits,small	sequential	circuits.	MSI	Words	lfr'toio^s	Processor	CPUs,	memories,	10	devices.	VLSI	Blocks	ofwords	ur'io	io-'s	Figure	2.7	The	major	computer	design	levels.	72	A	few	basic	component	types	from	each	design	level	are	listed	in	Figure	2.7.	section	2	^e
^°^c	£ates	rec°gnized	as	primitive	at	the	gate	level	include	AND,	OR,	System	Design	NAND,	NOR,	and	NOT	gates.	Consequently,	the	EXCLUSIVE-OR	circuit	of	Figure	2.2	is	an	example	of	a	gate-level	circuit	composed	of	five	gates.	Thecomponent	marked	XOR	in	Figure	2.5b	performs	the	EXCLUSIVE-OR	functionand	so	can	be	thought	of	as	a	more
abstract	or	higher-level	view	of	the	circuitof	Figure	2.2,	in	which	all	internal	structure	has	been	abstracted	away.	Similarly,the	half-adder	block	of	Figure	2Ab	represents	a	higher-level	view	of	the	three-component	circuit	of	Figure	2.5b.	We	consider	a	half	adder	to	be	a	register-levelcomponent.	We	might	regard	the	circuit	of	Figure	2.5b	as	being	at	the
registerlevel	also,	but	because	NAND	is	another	gate	type	and	XOR	is	sometimes	treatedas	a	gate,	this	circuit	can	also	be	viewed	as	gate	level.	Figure	2.7	indicates	some	further	differences	between	the	design	levels.	Theunits	of	information	being	processed	increase	in	complexity	as	one	goes	from	thegate	to	the	processor	level.	At	the	gate	level
individual	bits	(Os	and	Is)	are	pro-cessed.	At	the	register	level	information	is	organized	into	multibit	words	or	vec-tors,	usually	of	a	small	number	of	standard	types.	Such	words	represent	numbers,instructions,	and	the	like.	At	the	processor	level	the	units	of	information	are	blocksof	words,	for	example,	a	program	or	a	data	set.	Another	important
difference	lies	inthe	time	required	for	an	elementary	operation;	successive	levels	can	differ	by	sev-eral	orders	of	magnitude	in	this	parameter.	At	the	gate	level	the	time	required	toswitch	the	output	of	a	gate	between	0	and	1	(the	gate	delay)	serves	as	the	time	unitand	typically	is	a	nanosecond	(ns)	or	less.	A	clock	cycle	of,	say,	10	ns,	is	a	com-monly
used	unit	of	time	at	the	register	level.	The	time	unit	at	the	processor	levelmight	be	a	program's	execution	time,	a	quantity	that	can	vary	widely.	System	hierarchy.	It	is	customary	to	refer	to	a	design	level	as	high	or	low;	themore	complex	the	components,	the	higher	the	level.	In	this	book	we	are	primarilyconcerned	with	the	two	highest	levels	listed	in
Figure	2.7,	the	processor	and	regis-ter	levels,	which	embrace	what	is	generally	regarded	as	computer	architecture.	Theordering	of	the	levels	suggested	by	the	terms	high	and	low	is,	in	fact,	quite	strong.A	component	in	any	level	L,	is	equivalent	to	a	(sub)	system	of	components	takenfrom	the	level	L,	_	,	beneath	it.	This	relationship	is	illustrated	in
Figure	2.8.	For-mally	speaking,	there	is	a	one-to-one	mapping	ht	between	components	in	L,	anddisjoint	subsystems	in	level	L,-.,;a	system	with	levels	of	this	type	is	called	a	hier-archical	system.	Thus	in	Figure	2.8	the	subsystem	composed	of	blocks	1,	3,	and	4in	the	low-level	description	maps	onto	block	A	in	the	high-level	description.	Fig-ures	2Ab	and
2.5b	show	two	hierarchical	descriptions	of	a	half-adder	circuit.	Complex	systems,	both	natural	and	artificial,	tend	to	have	a	well-defined	hier-archical	organization.	A	profound	explanation	of	this	phenomenon	has	been	givenby	Herbert	A.	Simon	[Simon	1962].	The	components	of	a	hierarchical	system	ateach	level	are	self-contained	and	stable	entities.
The	evolution	of	systems	fromsimple	to	complex	organizations	is	greatly	helped	by	the	existence	of	stable	inter-mediate	structures.	Hierarchical	organization	also	has	important	implications	in	thedesign	of	computer	systems.	It	is	perhaps	most	natural	to	proceed	from	higher	tolower	design	levels	because	this	sequence	corresponds	to	a	progression	of
succes-sively	greater	levels	of	detail.	Thus	if	a	complex	system	is	to	be	designed	usingsmall-scale	ICs	or	a	single	IC	composed	of	standard	cells,	the	design	process	mightconsist	of	the	following	three	steps.	x\	1	2	*	1	A	5	1	rl	3	►4	to	*	(a)	Figure	2.8	5	Two	descriptions	of	a	hierarchical	system:	(a)	low	level;	(b)	high	level.	1.	Specify	the	processor-level
structure	of	the	system.	2.	Specify	the	register-level	structure	of	each	component	type	identified	in	step	1.	3.	Specify	the	gate-level	structure	of	each	component	type	identified	in	step	2.	This	design	approach	is	termed	top	down;	it	is	extensively	used	in	both	hardwareand	software	design.	If	the	foregoing	system	is	to	be	designed	using	medium-
scaleICs	or	standard	cells,	then	the	third	step,	gate-level	design,	is	no	longer	needed.	As	might	be	expected,	the	design	problems	arising	at	each	level	are	quite	dif-ferent.	Only	in	the	case	of	gate-level	design	is	there	a	substantial	theoretical	basis(Boolean	algebra).	The	register	and	processor	levels	are	of	most	interest	in	com-puter	design,	but
unfortunately,	design	at	these	levels	is	largely	an	art	that	dependson	the	designers'	skill	and	experience.	In	the	following	sections	we	examine	designat	the	register	and	processor	levels	in	detail,	beginning	with	the	better-understoodregister	level.	We	assume	that	the	reader	is	familiar	with	binary	numbers	and	withgate-level	design	concepts
[Armstrong	and	Gray	1993;	Hayes	1993;	Hachtel	andSomenzi	1996],	which	we	review	in	the	next	section.	73	CHAPTER	2	Design	Methodology	2.1.3	The	Gate	Level	Gate-level	(logic)	design	is	concerned	with	processing	binary	variables	whose	pos-sible	values	are	restricted	to	the	bits	(binary	digits)	0	and	1.	The	design	componentsare	logic	gates,
which	are	simple,	memoryless	processing	elements,	and	flip-flops,which	are	bit-storage	devices.	Combinational	logic.	A	combinational	film	rum,	also	referred	to	as	a	logic,	or	aBoolean	function,	is	a	mapping	from	the	set	of	2"	input	combinations	of	n	binaryvariables	onto	the	output	values	0	and	1.	Such	a	function	is	denoted	by	r(.v,.	v:	74	SECTION
2.1System	Design	xn)	or	simply	by	z.	The	function	z	can	be	defined	by	a	truth	table,	which	specifiesfor	every	input	combination	(jc1,	x2,...,	xn)	the	corresponding	value	of	z{xx,	x2,...,xn).	Figure	2.9a	shows	the	truth	table	for	a	pair	of	three-variable	functions,	s0(xq,v'o	c_,)	and	c0(xq,	Vq,	c_,),	which	are	the	sum	and	carry	outputs,	respectively,	of	alogic
circuit	called	a	full	adder.	This	useful	logic	circuit	computes	the	numericalsum	of	its	three	input	bits	using	binary	(base	2)	arithmetic:	c&0	=	xQphisy0plusc_]	(2.2)	For	example,	the	last	row	of	the	truth	table	of	Figure	2.9a	expresses	the	fact	thatthe	sum	of	three	Is	is	CqS0	=	112,	that	is,	the	base-2	representation	of	the	numberthree.	When	discussing
logic	circuits,	we	will	normally	reserve	the	plus	symbol	(+)for	the	logical	OR	operation,	and	write	out	plus	for	numerical	addition.	We	willalso	use	a	subscript	to	identify	the	number	base	when	it	is	not	clear	from	the	con-text;	for	example,	twelve	is	denoted	by	1210	in	decimal	and	by	11002	in	binary.	A	combinational	function	z	can	be	realized	in	many
different	ways	by	combi-national	circuits	built	from	the	standard	gate	types,	which	include	AND,	OR,	Inputs	Outputs	xo	>'o	C-i	co	5o	0	0	0	0	0	0	0	1	0	1	0	1	0	0	1	0	1	1	1	0	1	0	0	0	1	1	0	1	1	0	0	1	0	1	1	1	1	11	1	EXCLUSIVE-OR	gate	>o	Half	adder	Half	adder	OR	gate	CO	NAND	gate	NAND	gate	used	as	an	inverter	(a)	(b)	x0	<	Vn	,_	--1	xi)	.'0	C	1	,2'>'i'>'o)
and	computes	their	sum	S	=	(s3,s2,S\,s0y,	it	also	accepts	an	inputcarry	signal	c_,	and	produces	an	output	carry	c3.	A	multibit	adder	is	treated	as	aprimitive	component	at	the	register	level,	as	shown	Figure	2.10b,	at	which	point	itsinternal	structure	or	logic	design	may	no	longer	be	of	interest.	Flip-flops.	By	adding	memory	to	a	combinational	circuit	in
the	form	of	1-bitstorage	elements	called	flip-flops,	we	obtain	a	sequential	logic	circuit.	Flip-flopsrely	on	an	external	clock	signal	CK	to	synchronize	the	times	at	which	they	respond	2This	design,	which	is	known	as	a	ripple-carry	adder,	and	other	types	of	binary	adders	are	examined	in	detailin	Chapter	4.	*3	>3	x2	>'2	77	x	y	cuFull	adder	Cnnr	S	x	y
cuFull	adder	x	y	c„Full	adder	c	y	c«Full	adder	-'	CHAPTER	2DesignMethodology	c0	(b)	Figure	2.10	Four-bit	ripple-carry:	(a)	logic	structure;	(b)	high-level	symbol.	to	changes	on	their	input	data	lines.	They	are	also	designed	to	be	unaffected	bytransient	signal	changes	(noise)	produced	by	the	combinational	logic	that	feedsthem.	An	efficient	way	to	meet
these	requirements	is	edge	triggering,	which	con-fines	the	flip-flop's	state	changes	to	a	narrow	window	of	time	around	one	edge	(the0-to-l	or	l-to-0	transition	point)	of	CK.	Figure	2.11	summarizes	the	behavior	of	the	most	common	kind	of	flip-flop,	anedge-triggered	D	{delay)	flip-flop.	(Another	well-known	flip-flop	type,	the	JK	flip-flop,	is	discussed	in
problem	2.11.)	The	output	signal	y	constitutes	the	stored	dataor	state	of	the	flip-flop.	The	D	flip-flop	reads	in	the	data	value	on	its	D	line	whenthe	0-to-l	triggering	edge	of	clock	signal	CK	arrives;	this	D	value	becomes	the	newvalue	of	y.	The	triangular	symbol	on	the	clock's	input	port	in	Figure	2.1	la	specifiesedge	triggering;	its	omission	indicates	level
triggering,	in	which	case	the	flip-flop(then	usually	referred	to	as	a	latch)	responds	to	all	changes	in	signal	value	on	D.Since	there	is	just	one	triggering	edge	in	each	clock	cycle,	there	can	be	just	onechange	in	y	per	clock	cycle.	Hence	we	can	view	the	edge-triggered	flip-flop	as	tra-versing	a	sequence	of	discrete	state	values	v(/),	one	for	every	clock	cycle
i.	The	input	data	line	D	can	be	varied	independently	and	so	can	go	through	sev-eral	changes	in	any	clock	cycle	i.	However,	only	the	data	value	D{i)	present	justbefore	the	arrival	of	the	triggering	edge	of	CK	determines	the	next	state	y{i	+	1).To	change	the	flip-flop's	state,	the	D	signal	must	be	held	steady	for	a	minimumperiod	known	as	the	setup	time
Tselup	before	the	flip-flop	is	triggered.	For	exam-ple,	in	Figure	2.1	lc,	which	shows	a	sample	of	the	D	flip-flop's	behavior,	we	haveD(l)	=	1	and	v(l)	=	0	in	clock	cycle	1.	At	the	start	of	the	next	clock	cycle,	ychanges	to	1	in	response	to	D(l)	=	1.	making	v(2)	=	1.	In	clock	cycle	3,	y	changes	78	SECTION	2.1System	Design	Data	Clock	PRED	>CK	—	>	Input
Di	i)0	1	CLR	State	0	0	10	1	Next	statevO'+l)	1	(a)	(b)	T	Triggen	ng	edge	Glitch/	'setup	1	01	1	0	0	\	/	1	1	II	Time	►■	1/	1	0	1	21	D	30	0	40	1	51	1	6	1	Clock	CKDataD	State	y	Cycle	iDataD(/)State	>■(/)	(c)	Figure	2.11	D	flip-flop:	(a)	graphic	symbol;	(b)	state	table;	(c)	timing	diagram.	back	to	0,	making	y(3)	=	0.	Even	though	D	=	1	for	most	of	clock	cycle	3,
D(3)	=	0during	the	critical	setup	phase	of	cycle	3,	thus	ensuring	that	y(4)	=	0.	Observe	thatthe	spurious	pulse	or	glitch	affecting	D	in	cycle	5	has	no	effect	on	y.	Hence	edge-triggered	flip-flops	have	the	very	useful	property	of	filtering	out	noise	signalsappearing	at	their	inputs.	When	a	flip-flop	is	first	switched	on.	its	state	y	is	uncertain	unless	it	is

explic-itly	brought	to	a	known	initial	state.	It	is	therefore	desirable	to	be	able	to	initialize(reset)	the	flip-flop	asynchronously,	that	is,	independently	of	the	clock	signal	CK,at	the	start	of	operation.	To	this	end,	a	flip-flop	can	have	one	or	two	asynchronouscontrol	inputs,	CLR	(clear)	and	PRE	(preset),	as	shown	in	Figure	2.11a.	Each	isdesigned	to	respond
to	a	brief	input	pulse	that	forces	y	to	0	in	the	case	of	CLR	or	to1	in	the	case	of	PRE.	In	normal	synchronous	operation	with	a	clock	that	is	matched	to	the	timingcharacteristics	of	its	flip-flops,	we	can	be	sure	that	one	well-defined	change	of	statetakes	place	in	a	sequential	circuit	during	each	clock	cycle.	We	do	not	have	to	worryabout	the	exact	times	at
which	signals	change	within	the	clock	cycle.	We	can	there-fore	consider	the	actions	of	a	flip-flop,	and	hence	of	any	sequential	circuit	employ-ing	it,	to	occur	at	a	discrete	sequence	of	points	of	time	/=	1,	2,	3,	...	In	effect,	theclock	quantizes	time	into	discrete,	technology-independent	time	steps,	each	ofwhich	represents	a	clock	cycle.	We	can	then
describe	a	D	flip-flop's	next-statebehavior	by	the	following	characteristic	equation:	y(/+l)	=	D(/)	(2.5)	which	simply	says	that	y	takes	the	value	of	D	delayed	by	one	clock	cycle,	hence	theD	flip-flop's	name.	Figure	2.1	\b	shows	another	convenient	way	to	represent	the	flip-flop's	next-state	behavior.	This	state	table	tabulates	the	possible	values	of	the	next
state	y{i	+	1)for	every	possible	combination	of	the	present	input	D(i)	and	the	present	state	y(i).	Itis	not	customary	(or	necessary)	to	include	clock-signal	values	explicitly	in	charac-teristic	equations	or	state	tables.	The	clock	is	considered	to	be	the	implicit	generatorof	time	steps	and	so	is	always	present	in	the	background.	Asynchronous	inputs	arealso
omitted	as	they	are	associated	only	with	initialization.	79	CHAPTER	2	Design	Methodology	Sequential	circuits.	A	sequential	circuit	consists	of	a	combinational	circuitand	a	set	of	flip-flops.	The	combinational	logic	forms	the	computational	or	data-processing	part	of	the	circuit.	The	flip-flops	store	information	on	the	circuit's	pastbehavior;	this	stored
information	defines	the	circuit's	internal	state	Y.	If	the	pri-mary	inputs	are	X	and	the	primary	outputs	are	Z,	then	Z	is	a	function	of	both	X	andY,	denoted	Z(X,Y).	It	is	usual	to	supply	a	sequential	circuit	with	a	precisely	con-trolled	clock	signal	that	determines	the	times	at	which	the	flip-flops	change	state;the	resulting	circuit	is	said	to	be	clocked	or
synchronous.	Each	tick	(cycle	orperiod)	of	the	clock	permits	a	single	change	in	the	circuit's	state	Y	as	discussedabove;	it	can	also	trigger	changes	in	the	primary	output	Z	Reflecting	the	impor-tance	of	state	behavior,	the	term	finite-state	machine	(FSM)	is	often	applied	to	asequential	circuit.	The	behavior	of	a	sequential	circuit	can	be	specified	by	a
state	table	thatincludes	the	possible	values	of	its	primary	outputs	and	its	internal	states.	Figure2.12a	shows	the	state	table	of	a	small	but	useful	sequential	circuit,	a	serial	adder,which	is	intended	to	add	two	unsigned	binary	numbers	X,	and	X2	of	arbitrarylength,	producing	their	sum	Z	=	X{	plus	X2.	The	numbers	are	supplied	serially,	thatis,	bit	by	bit,
and	the	result	is	also	produced	serially.	In	contrast,	the	combinational	Input	x	1*2	00	01	10	11	Present	S0(y	=	0)	50.0	50.1	50.1	s,.o	state	5,.0	5,.l	S,(y=l)	s0.i	S,,0	Next	Presentstate	output	(a)	Figure	2.12	(a)	State	table;	(b)	logic	circuit	for	a	serial	adder.	D	nip-Hop	Clock	80	adder	of	Figure	2.10	is	a	"parallel"	adder,	which,	ignoring	its	internal-signal
propagation	delays,	adds	all	bits	of	the	input	numbers	simultaneously.	In	one	clock	cycle	System	Design	'"'	^	se"a^	adder	receives	2	input	bits	Xy(i)	and	x2(i)	and	computes	1	bit	z(i)	of	Z	It	also	computes	a	carry	signal	c(i)	that	affects	the	addition	in	the	next	clock	cycle.Thus	the	output	computed	in	clock	cycle	i	is	c(i)z(i)	=	x^Oplus	x2(i)plus	c(i	-	1)
(2.6)	where	c(i	-	1)	must	be	determined	from	the	adder's	present	state	S(i).	Observe	that(2.6)	is	equivalent	to	the	expression	(2.2)	for	the	full-adder	function	defined	earlier.It	follows	that	two	possible	internal	states	exist:	50,	meaning	that	the	previous	carrysignal	c(i	-	1)	=	0,	and	Sx,	meaning	that	c(i	-	1)	=	1.	These	considerations	lead	tothe	twostate
state	table	of	Figure	2.12a.	An	entry	in	row	5(0	and	column	x^x^i)of	the	state	table	has	the	format	S(i	+	1),	z(i),	where	S(i	+	1)	is	the	next	internal	statethat	the	circuit	must	have	when	the	present	state	is	5(0	and	the	present	primaryinput	combination	is	xl(i)x2(i);	z(i)	is	the	corresponding	primary	output	signal	thatmust	be	generated.	Because	the
serial	adder	has	only	two	internal	states,	its	memory	consists	of	asingle	flip-flop	storing	a	state	variable	y.	There	are	only	two	possible	ways	toassign	0s	and	Is	to	y.	We	select	the	"natural"	state	assignment	that	has	y	=	0	for	50and	y	=	1	for	Sx,	since	this	equates	>(/)	with	the	stored	carry	signal	c(i	-	1).	Assumethat	we	use	an	edgetriggered	D	flip-flop
(Figure	2.11)	to	store	y.	The	combina-tional	logic	C	then	must	generate	two	signals:	the	primary	output	z(i)	and	a	second-ary	output	signal	D(i)	that	is	applied	to	the	D	flip-flop's	data	input.	The	flip-flop'sbehavior	is	defined	by	its	characteristic	equation	(2.5);	that	is,	y(i	+	1)	=	D(i).Hence	we	have	D(i)	=	c(0	It	follows	from	the	above	discussion	that	C	can
be	implemented	directly	by	a	full-adder	circuit	such	as	that	of	Figure	2.9b,	whose	sum	output	is	z	and	whose	carryoutput	is	D;	see	Figure	2.12b.	Before	entering	two	new	numbers	to	be	added,	it	isnecessary	to	reset	the	serial	adder	to	the	50	state.	The	easiest	way	to	do	so	is	toapply	a	reset	pulse	to	the	flip-flop's	asynchronous	clear	(CLR)	input.
Example	2.2	involves	a	similar,	but	more	complex	sequential	circuit	and	dem-onstrates	the	use	of	CAD	tools	in	its	design.	example	2.2	design	of	a	4-bit-stream	serial	adder.	Consider	another	typeof	serial	adder	that	adds	four	number	streams	instead	of	the	two	handled	by	a	conven-tional	serial	adder	(Figure	2.12).	The	new	adder	has	four	primary	input
lines	jc,,	x2,	x3,x4	and	a	single	primary	output	z.	To	determine	the	circuit's	state	behavior—often	themost	difficult	part	of	the	design	process—we	first	identify	the	information	to	be	stored.As	in	the	standard	serial	adder	case,	the	circuit	must	remember	carry	information	computed	in	earlier	clock	cycles.	The	current	2-bit	sum	SUM(i)	=	c(i)z(i)	is	given
by	SUM(i)	=	xx{i)plus	x2(i)plus	x3(/)/?/us	x4(i)plus	c(i	-1)	where	c(i	-1)	is	the	carry	computed	in	the	preceding	clock	cycle.	If	c(i	-1)	is	0	andeach	xfi)	=	1,	then	SUM(i)	=	1	plus	1	plus	1	plus	1	plus	0	=	4	=	1002,	so	c(i)	=	102.With	c(i	-1)	=	102,	SUM{i)	becomes	6	=	1102,	making	c{i)	=	112.	Finally,	c(i	-	1)	=112	makes	SUM(i)	=	1112	and	c(i)	=	112,
which	is	the	maximum	possible	value	of	c.The	carry	data	to	be	stored	is	a	binary	number	ranging	from	002	to	112,	which	implies	that	the	adder	needs	four	states	and	two	flip-flops.	We	will	denote	the	four	states	by50,	5,,	S2,	S3,	where	5,	represents	a	stored	carry	of	(decimal)	value	i.	Figure	2.13a	shows	the	adder's	state	table,	which	has	four	rows	and
16	columns.For	present	state	S(i)	and	input	combination	j,	the	next-state/output	entry	Sk,z	isobtained	by	adding	i2	and	the	4	input	bits	that	determine	7	to	form	SUM(i)	=	(k2k]k0)2.	Itfollows	that	k	=	(k2ki)2	and	z	=	k0.	For	example,	with	present	state	S2	and	present	input7,	SUM(i)	=	0	plus	1	plus	1	plus	1	plus	102	=	1012,	so	z	=	1	and	A:	=102	=	2,
making	S-,the	next-state.	Following	this	pattern,	it	is	straightforward	to	construct	the	adder's	statetable.	With	D	flip-flops,	the	next-state	values	>',(/	+	l)y2(i	+	I)	coincide	with	the	flip-flops'	data	input	values	D{(i)D2(i).	The	adder	thus	has	the	general	structure	shown	inFigure	2.13£>.	A	truth	table	for	the	combinational	logic	C	appears	in	Figure	2.13c.
It	is	deriveddirectly	from	Figure	2.13a	with	the	states	assigned	the	four	bit	patterns	of	>',y2	as	follows:	S0	=	00,	5,	=	01,	S2	=	10,	and	53=	11.	Suppose	we	want	to	design	Cas	a	two-level	il	CHAPTER	2	Design	Methodology	Present	inputs	xlx2xix4	(decimal)	0	1	2	So	3	4	5	6	7	8	9	10	S0,0	S„.	1	S0,	1	s,.o	S0.1	S,.0	S,.0	S,.l	S0.1	S[,0	S,,0	11	12	13	14	15
S„l	S,,0	S,,l	S,.l	S2,0	Present	5i	s0,1	s,,o	s,.o	S,.l	S,,0	S,,	1	S,,	1	S2,0	S,,0	S„	1	S,,l	state	S->	S,,0	S,.l	S,,l	s2,o	S,.	1	S2.0	S2,0	S2.1	S,.l	S2.0	S2,0	S2.l	s2.0	s2,1	s2,1	s3,0	S3	s2.1	s2.0	s2,1	s2,1	s3,0	s2.0	s2.1	s2.1	S3.0	s2.1	s3,0	s3.0	s3.1	S„	1	5:.0	S2,0	(a)	Combinationallogic	C	CK<	CK<	Dy	Reset	Clock	Present	Present	Secondary-	Primary	inputs	state
outputs	output	A"	j	X2	Xy	X4	>'l	>'2	£»,	D2	z	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	1	2	0	0	0	0	1	0	0	1	0	3	0	0	0	0	1	1	0	1	1	4	0	0	0	1	0	0	0	0	1	5	0	0	0	1	0	1	0	1	0	6	0	0	0	1	1	0	0	1	1	7	0	0	0	1	1	1	1	0	0	8	0	0	10	0	0	0	0	1	59	1	1	1	0	1	1	1	1	0	S2.0	S,,	1	S2.0	S2.0	S2,1	60	1	1	1	1	0	0	1	0	0	61	1111	0	1	1	0	1	62	1	1	1	1	1	0	1	1	0	63	1	1	1	1	1	1	1	1	1	(b)	(c)	Figure
2.13	Four-bit-stream	serial	adder:	(a)	state	table;	(b)	overall	structure;	(c)	truth	table	for	82	%	espresso	-Dexact	Example	2.2	SECTION	2.1System	Design	.1	6	.o	3.	26	1010-1	001	.p	51	27	0110-1	001	1	-00010	010	28	1001-1	001	2	0-0010	010	29	0101-1	001	3	00-010	010	30	0011-1	001	4	000-10	010	31	-11111	010	5	00001-	010	32	1-1111	010	6	1000-0
001	33	11-111	010	7	0100-0	001	34	111-11	010	8	0010-0	001	35	11111-	010	9	0001-0	001	36	1111-1	001	10	0000-1	001	37	-111-1	100	11	-11000	010	38	1-11-1	100	12	1-0100	010	39	11-1-1	100	13	01-100	010	40	111—1	100	14	101-00	010	41	1111—	100	15	0-1001	010	42	—Ill	100	16	10-001	010	43	—1-11	100	17	-00101	010	44	-1—11	100	18	010-01
010	45	1—11	100	19	11000-	010	46	—111-	100	2	0	00110-	010	47	-1-11-	100	21	1110-0	001	48	1—11-	100	22	1101-0	001	49	-11-1-	100	23	1011-0	001	50	1-1-1-	100	24	0111-0	001	51	11—1-	100	25	1100-1	001	.	e	Figure	2.14	///I	\	\AX	Minimal	two-level	(SOP)	design	for	C	com-	x,	x2	x3	x4	>>,	y2	D,	£>2	z	puted	by	ESPRESSO.	circuit	like	that	of	Figure
2.9c,	using	the	minimum	number	of	gates.	Manual	minimiza-tion	methods	[Hayes	1993]	are	painfully	slow	in	this	case	without	computer	aid.	Wehave	therefore	used	a	logic	synthesis	program	called	Espresso	[Brayton	et	al.	1984;Hachtel	and	Somenzi	1996]	to	obtain	a	two-level	SOP	design.	To	instruct	Espresso	tocompute	the	minimum-cost	SOP	design
on	a	UNIX-based	computer	requires	issuing	acommand	like	^espresso	seradd4	where	seradd4	is	a	file	containing	the	truth	table	of	Figure	2.13c	or	an	equivalentdescription	of	C.	Espresso	responds	with	the	table	of	Figure	2.14,	which	specifies	anSOP	design	containing	the	fewest	product	terms	(these	are	in	a	minimal	form	calledprime	implicants
[Hayes	1993]),	in	this	case,	51.	For	example,	row	26,	which	has	theformat	x]x2x3x4yiy2	DiD2z=	1010-1	001	states	that	output	z	(but	not	the	outputs	D,	or	D2)	has	xix2xix4y2	as	one	of	its	chosenproduct	terms.	The	dash	in	1010-1	indicates	a	literal,	in	this	case	ylt	that	is	not	includedin	the	term	in	question.	Similarly,	row	51	(11	-	-1	-	100)	states	that
xix2yi	is	a	term	ofDy	We	conclude	from	Figure	2.14	that	an	SOP	realization	of	C	for	the	fourstreamadder	has	51	product	terms,	none	of	which	happen	to	be	shared	among	the	output	func-tions.	This	conclusion	implies	a	two-level	circuit	containing	the	equivalent	of	at	least54	gates	(51	ANDs	and	three	ORs),	some—especially	the	OR	gates—with	very
highfan-in,	which	makes	this	type	of	two-level	design	expensive	and	impractical	for	manyIC	technologies.	Example	2.6	in	section	2.2.3	shows	an	alternative	approach	that	leadsto	a	lower-cost,	multilevel	design	for	this	adder.	Minimizing	the	number	of	gates	in	a	sequential	circuit	is	difficult	because	it	isaffected	by	the	flip-flop	types,	the	state
assignment,	and,	of	course,	the	way	inwhich	the	combinational	subcircuit	C	is	designed.	Other	design	techniques	exist	tosimplify	the	design	process	at	the	expense	of	using	more	logic	elements.	It	isimpractical	to	deal	with	complete	binary	descriptions	like	state	tables	if	they	con-tain	more	than,	say,	a	dozen	states.	Consequently,	large,	sequential
circuits	aredesigned	by	heuristic	techniques	whose	implementations	use	reasonable	but	non-minimal	amounts	of	hardware	[Hayes	1993;	Hachtel	and	Somenzi	1996].	Thesecircuits	are	often	best	designed	at	the	more	abstract	register	level	rather	than	thegate	level.	83	CHAPTER	2	Design	Methodology	2.2	THE	REGISTER	LEVEL	At	the	register	or
register-transfer	level,	related	information	bits	are	grouped	intoordered	sets	called	words	or	vectors.	The	primitive	components	are	small	combina-tional	or	sequential	circuits	intended	to	process	or	store	words.	2.2.1	Register-Level	Components	Register-level	circuits	are	composed	of	word-oriented	devices,	the	more	importantof	which	are	listed	in
Figure	2.15.	The	key	sequential	component,	which	gives	thislevel	of	abstraction	its	name,	is	a	(parallel)	register,	a	storage	device	for	words.Other	common	sequential	elements	are	shift	registers	and	counters.	A	number	ofstandard	combinational	components	exist,	ranging	from	general-purpose	devices,such	as	word	gates,	to	more	specialized	circuits,
such	as	decoders	and	adders.	Type	Component	Functions	Combinational	Sequential	Word	gates.Multiplexers.Decoders	and	encoders.Adders.	Arithmetic-logic	units.Programmable	logic	devices.	(Parallel)	registers.Shift	registers.	Logical	(Boolean)	operations.	Data	routing:	general	combinational	functions.	Code	checking	and	conversion.	Addition	and
subtraction.	Numerical	and	logical	operations.	General	combinational	functions.	Information	storage.	Information	storage;	serial-parallel	converCounters.	Programmable	logic	devices.	Control/timing	signal	generation.General	sequential	functions.	Figure	2.15	The	major	component	types	at	the	register	level.	84	SECTION	2.2The	Register	Level
Register-level	components	are	linked	to	form	circuits	by	means	of	word-carryinggroups	of	lines,	referred	to	as	buses.	Types.	The	component	types	of	Figure	2.15	are	generally	useful	in	register-level	design;	they	are	available	as	MSI	parts	in	various	IC	series	and	as	standardcells	in	VLSI	design	libraries.	However,	they	cannot	be	identified	a	priori
based	onsome	property	analogous	to	the	functional	completeness	of	gate-level	operations.For	example,	we	will	show	that	multiplexers	can	realize	any	combinational	func-tion.	This	completeness	property	is	incidental	to	the	main	application	of	multiplex-ers,	which	is	signal	selection	or	path	switching.	There	are	no	universally	accepted	graphic	symbols
for	register-level	compo-nents.	They	are	usually	represented	in	circuit	diagrams	by	blocks	containing	anabbreviated	description	of	their	behavior,	as	in	Figure	2.16.	A	single	signal	line	in	adiagram	can	represent	a	bus	transmitting	m	>	1	bits	of	information	in	parallel;	m	isindicated	explicitly	by	placing	a	slash	(/)	in	the	line	and	writing	m	next	to	it
(seeFigure	2.16).	A	components's	10	lines	are	often	separated	into	data	and	controllines.	An	m-bit	bus	may	be	given	a	name	that	identifies	the	bus's	role,	for	example,the	type	of	data	transmitted	over	a	data	bus.	A	control	line's	name	indicates	theoperation	determined	by	the	line	in	its	active,	enabled,	or	asserted	state.	Unlessotherwise	indicated,	the
active	state	of	a	bus	occurs	when	its	lines	assume	the	logi-cal	1	value.	A	small	circle	representing	inversion	is	placed	at	an	input	or	outputport	of	a	block	to	indicate	that	the	corresponding	lines	are	active	in	the	0	state	andinactive	in	the	1	state.	Alternatively,	the	name	of	a	signal	whose	active	value	is	0includes	an	overbar.	The	input	control	lines
associated	with	a	multifunction	block	fall	into	twobroad	categories:	select	lines,	which	specify	one	of	several	possible	operations	thatthe	unit	is	to	perform,	and	enable	lines,	which	specify	the	time	or	condition	for	aselected	operation	to	be	performed.	Thus	in	Figure	2.16,	to	perform	some	operationFx,	first	set	the	select	line	F	to	a	bit	pattern	denoting
F{	and	then	activate	the	edge-triggered	enable	line	£by	applying	a	O-to-1	edge	signal.	Enable	lines	are	often	con-nected	to	clock	sources.	The	output	control	signals,	if	any,	indicate	when	or	howthe	unit	completes	its	processing.	Figure	2.16	indicates	termination	by	5	=	0.	Thearrowheads	are	omitted	when	we	can	infer	signal	direction	from	the	circuit
struc-ture	or	signal	names.	Function	kselect	F	Enable	E	Controlinput	lines	Data	input	linesAi	A-?	A-i	i	/f	m	/T	m	X	Z,	Z2	Data	output	lines	Control	output	lines	Figure	2.16	Generic	block	representation	of	aregister-level	component.	Operations.	Gate-level	logic	design	is	concerned	with	combinational	func-tions	whose	signal	values	are	from	the	two-
valued	set	B	=	{0,1}	and	form	a	Bool-ean	algebra.	We	can	extend	these	functions	to	functions	whose	values	are	takenfrom	Bm,	the	set	of	2m	m-bit	words,	rather	than	from	B.	Let	z(xx,x2,...,xn)	be	anytwo-valued	combinational	function.	Let	Xx,X2,...,Xn	denote	m-bit	binary	wordshaving	the	form	X,	=	(xiti,xi^,...,xi^)	for	/	=	1,2,...,«.	We	define	the	word
opera-tion	z	as	follows:	z(Xl,X2,...,Xn)	=	[z(xl	{,x2	u...,xn	l)^(xl2,x22,...,xn2),...,zixljn,x2jn,...,xnjn)]	(2.7)	This	definition	simply	generalizes	the	usual	Boolean	operations,	AND,	NAND,and	so	forth,	from	1-bit	to	m-bit	words.	If	z	is	the	OR	function,	for	instance,	wehave	Xl+X2+-	+Xn	=	(*lfl	+	x2A	+	■■■+	xnAsh2	+	x22	+	■■■+	xn2,	■	•	•'	X\jn	+	xljm	+
'••	+	xn,m)	which	applies	OR	bitwise	to	the	corresponding	bits	of	n	m-bit	words.2mnThe	set	of	all	2	combinational	functions	defined	on	n	m-bit	words	forms	a	Boolean	algebra	with	respect	to	the	word	operations	for	AND,	OR,	and	NOT.	Thisgeneralization	of	Boolean	algebra	to	multibit	words	is	analogous	to	the	extensionof	the	ordinary	algebra	from
single	numbers	(scalars)	to	vectors.	Pursuing	thisanalogy,	we	can	treat	bits	as	scalars	and	words	as	vectors,	and	obtain	more	com-plex	logical	operations,	such	as	yX=(yxl,yx2,	...,yxjy	+	X	=	(y	+	x],y	+	x2,	...,y	+	xj	(2.8)	Word-based	logical	operations	of	this	type	are	useful	in	some	aspects	of	register-level	design.	However,	they	do	not	by	themselves
provide	an	adequate	design	the-ory	for	several	reasons.	•	The	operations	performed	by	some	basic	register-level	components	are	numeri-cal	rather	than	logical;	they	are	not	easily	incorporated	into	a	Boolean	frame-work.	•	Many	of	the	logical	operations	associated	with	register-level	components	arecomplex	and	do	not	have	the	properties	of	the	gates
—interchangeability	ofinputs,	for	example—that	simplify	gate-level	design.	•	Although	a	system	often	has	a	standard	word	length	w	based	on	the	width	ofsome	important	buses	or	registers,	some	buses	carry	signals	with	a	differentnumber	of	bits.	For	example,	the	outcome	of	a	test	on	a	set	5	of	vv-bit	words(does	S	have	property	PI)	is	1	bit	rather	than
w.	The	lack	of	a	uniform	word	sizefor	all	signals	makes	it	difficult	to	define	a	useful	algebra	to	describe	operationson	these	signals.	Lacking	an	adequate	general	theory,	register-level	design	is	tackled	mainly	withheuristic	and	intuitive	methods.	We	next	introduce	the	major	combinational	and	sequential	components	used	indesign	at	the	register	level.
(Refer	to	Figure	2.15).	85	CHAPTER	2	Design	Methodology	86	SECTION	2.2The	Register	Level	Word	gates.	Let	X	=	(xux2,...,xm)	and	Y	=	(yi,y2,...,y„,)	be	two	m-bit	binarywords.	As	noted	already,	it	is	useful	to	perform	gate	operations	bitwise	on	X	and	Yto	obtain	another	m-bit	word	Z	=	(zi,z2,...,Zm).	We	coin	the	term	word-gate	opera-tions	for	logical
functions	of	this	type.	In	general,	if/is	any	logic	operator,	wewrite	Z=f(X,Y)	if	z,	=/(jc,,y,)	for	i	=	l,2,...,m.	For	example,	Z=	XY	denotes	the	m-bit	NAND	operation	defined	by	Z=(zl,z2,...,zm)	=	(xly1,x2y2,	...,xmym)	This	generalized	NAND	is	realized	by	the	gate-level	circuit	in	Figure	2.17a.	It	isrepresented	in	register-level	diagrams	by	the	two-input
NAND	symbol	of	Figure2.17b,	which	is	an	example	of	a	word	gate.	It	is	also	useful	to	represent	scalar-vector	operations	by	a	single	gate	symbol.	For	example,	the	operation	y	+	Xdefined	by	(2.8)	and	realized	by	the	circuit	of	Figure	2.18a	can	be	represented	bythe	register-level	gate	symbol	of	Figure	2.18b.	Word	gates	are	universal	in	that	they	suffice
to	implement	any	logic	circuit;moreover,	word-gate	circuits	can	be	analyzed	using	Boolean	algebra.	In	practice,however,	the	usefulness	of	word	gates	is	severely	limited	by	the	relative	simplicityof	the	operations	they	perform	and	by	the	variability	in	word	size	found	at	the	reg-ister	level.	*i	y\	x2	>'2	X	Y	m	,'	/	m	(a)	V	z	(b)	Figure	2.17	Two-input,	m-bit
NAND	word	gate:	(a)	logic	diagram	and	(b)	symbol.	(a)	X	y	m	/	/	1	Z	(b)	Figure	2.18	OR	word	gate	implementing	y	+	X:	(a)	logic	diagram;	(b)	symbol.	Multiplexers.	A	multiplexer	is	a	device	intended	to	route	data	from	one	ofseveral	sources	to	a	common	destination;	the	source	is	specified	by	applyingappropriate	control	(select)	signals	to	the
multiplexer.	If	the	maximum	number	ofdata	sources	is	k	and	each	10	data	line	carries	m	bits,	the	multiplexer	is	referred	toas	a	k-input	(or	k-way),	mbit	multiplexer.	It	is	convenient	to	make	k	=	2P,	so	thatdata	source	selection	is	determined	by	an	encoded	pattern	or	address	of	p	bits.The	2P	addresses	then	cover	the	range	00...0,	00...1,	...,	11...1	=	2P	-
1.	A	multi-plexer	is	easily	denoted	by	a	suitably	labeled	version	of	the	generic	block	symbolof	Figure	2.16;	the	tapered	block	symbol	shown	in	Figure	2.19,	where	the	narrowend	indicates	the	data	output	side,	is	also	common.	Let	a{	=	1	when	we	want	to	select	the	m-bit	input	data	bus	X,	=	(jc,-^*,	(,...,xi,m-\)	°f	me	multiplexer	of	Figure	2.19.	Then	at	=
1	when	we	apply	the	word	cor-responding	to	the	binary	number	i	to	the	select	bus	5.	The	binary	variable	a,denotes	the	selection	of	input	data	bus	X,—a,	is	not	a	physical	signal.	The	dataword	on	X,	is	then	transferred	to	Z	when	e	=	1.	The	operation	of	the	2^-input	w-bitmultiplexer	is	therefore	defined	by	m	sum-of-product	Boolean	equations	of	theform
Zj=	(x0ja0	+	xljal+	•••	+x2p_i	ja2p_i)e	for;'	=	0,	1,	...,m-	1	(2.9)	or	by	the	single	word-based	equation	Z=	(X0a0	+	Xlal	+	{a2P-i)e	Figure	2.20	shows	a	typical	gate-level	realization	of	a	two-input,	4-bit	multiplexer.Several	&-input	multiplexers	can	be	used	to	route	more	than	k	data	paths	byconnecting	them	in	the	treelike	fashion	shown	in	Figure	2.21.	A
g-level	tree	cir-cuit	of	this	type	forms	a	^-input	multiplexer.	A	distinct	select	line	is	associatedwith	every	level	of	the	tree	and	is	connected	to	all	multiplexers	in	that	level.	Thuseach	level	performs	a	partial	selection	of	the	data	line	X,	to	be	connected	to	theoutput	Z.	Multiplexers	as	function	generators.	Multiplexers	have	the	interesting	prop-erty	that
they	can	compute	any	combinational	function	and	so	form	a	type	of	uni-versal	logic	generator.	Specifically,	a	2"-input,	1-bit	multiplexer	MUX	cangenerate	any	^-variable	function	z(v0,v,,...,v„_,).	This	is	accomplished	by	apply-ing	the	n	input	variables	v0,v,,...,vn_,	to	the	n	select	Ymes	s0,s],...,sn_]of	MUX,	and2"	function-specific	constant	values	(0	or	1)
to	MUX's	2"	input	data	lines	.v0,.v,	87	CHAPTER	2	Design	Methodology	Data	in	X,	1	%2Pi-	m	r	...	m)r	Select	S	Enable	e	P	\	0	1	Multiplexer(MUX)	Data	out	Z	Figure	2.19	A	2/'-input,	m-bit	multiplexer.	Data	in	xn	ft	x	o.o	*i.o	*o.	1	xi,	1	*0,2	^1.2	x0.3	xl.l	SECTION	2.2The	Register	Level	Select	s	Enable	e	Data	out	z0	Figure	2.20	Realization	of	a	two-input,
4-bit	multiplexer.	Data	in	An	X<	X2	X3	X4	X5	X6	Xn	^'—To	T7	I—To	i7	|—To	i7	I—To	1	A	Mux	/	1	A	Mux	/	1	A	Mux	/	1	A	Mux	Select	•<	^i	—»	Enable	e	0	11	4	Mux	Mux	1	A	Mux	/	Data	out	Z	Figure	2.21	An	eight-input	multiplexer	constructed	from	two-input	multiplexers.	jc2n_j.	The	output	of	MUX	is	then	Z=	(x0a0	+	xla1	+	•••	+x2"_,a2«_1)e	(2.10)	as
defined	by	(2.9),	where	again	a,	denotes	the	selection	of	input	data	bus	jc,.Clearly,	a,	corresponds	to	the	z'th	row	in	z's	truth	table	with	respect	to	the	inputvariables	v0,	v^...,	vn_,.	With	e=	1,	setting	xt	=	1	(0)	if	row	i	of	the	truth	table	for	zis	1	(0)	makes	(2.10)	into	a	sum-of-products	expression	for	z.	Hence	by	connectingeach	input	data	line	to	the
appropriate	logic	value	0	or	1,	we	can	realize	any	of	the2	possible	logic	functions	of	n	variables.	EXAMPLE	2.3	USING	A	MULTIPLEXER	TO	IMPLEMENT	A	FULL	ADDER.	As	we	saw	in	section	2.1,	a	full	adder	is	a	three-input,	two-output	circuit	that	adds	3	bits	x0,	y0,	andc_]	(the	carry	in)	to	obtain	a	2-bit	result	consisting	of	s0	(the	sum	bit)	and	c0	(the
carryout).	It	is	the	basic	component	of	a	serial	adder	(Figure	2.12)	and	has	various	gate-levelrealizations	such	as	those	of	Figure	2.9.	A	multiplexer	MUXX	with	m	=	2	and	n	=	2P	=	8,that	is,	an	eight-input,	2-bit	multiplexer,	can	implement	the	full	adder,	as	shown	in	Fig-ure	2.22b.	The	adder's	input	variables	are	applied	to	the	three	select	lines,	not	as
mightbe	expected,	to	the	multiplexer's	data	input	buses.	Instead	constant	values	0	or	1	areapplied	to	the	data	inputs	as	indicated.	Each	pattern	i	of	x^qC^	selects	a	specific	inputdata	bus	X,	and	routes	its	2-bit	word	to	the	output	bus	z	=	s0c0.	Observe	how	this	proce-dure	effectively	maps	the	truth	table	for	.s0	and	c0	(Figure	2.22a)	directly	onto
M£/X,'sinput	data	lines.	If	one	input	variable	of	the	full	adder,	say	c_,,	is	available	in	both	true	and	comple-mented	form,	we	can	implement	the	adder	with	the	smaller,	four-input,	2-bit	multi-plexer	MUX2	shown	in	Figure	2.22c.	The	two	inputs	x0,	y0	are	applied	to	M£/X2's	selectlines	as	before,	but	we	apply	one	of	c_x,	c_1?	0,	or	1	to	each	line	Xq	of
data	bus	X,.	NowXjj	must	realize	two	rows	of	the	form	x$>00	and	x^qI	in	the	adder's	truth	table.	If,	forexample,	these	rows	have	the	same	fixed	value	a	for	the	output	(s0	or	c0)	of	interest,then	we	apply	a	tox^-.	If	the	rows	have	different	values,	then	either	c_,	or	c_,	is	applied	89	CHAPTER	2	Design	Methodology	Inputs	Outputs	*0	yo	c-\	so	co	0	0	0	0	0
0	0	1	1	0	0	1	0	1	0	0	1	1	0	1	1	0	0	1	0	1	0	1	0	1	1	1	0	0	1	1	1	1	1	1	(fl)	Sum	s0Carry	c0	Sum	sQ—	Carry	c0	(c)	Figure	2.22	Multiplexer-based	full	adder:	(a)	truth	table;	(b)	first	version;	(c)	second	version.	90	SECTION	2.2The	Register	Level	to	Xn,	as	appropriate.	We	see	from	this	example	that	a	2"-input,	m-bit	multiplexer	canrealize	any	(n	+	Invariable,
w-output	logic	function.	Decoders.	A	l-out-of-2"	or	1/2"	decoder	is	a'combinational	circuit	with	ninput	lines	X	and	2"	output	lines	Z	such	that	each	of	the	2"	possible	input	combina-tions	Aj	applied	to	X	activates	a	corresponding	output	line	z(.	Figure	2.23	shows	a1/4	decoder.	Several	1/2"	decoders	can	be	used	to	decode	more	than	n	lines	byconnecting
them	in	a	tree	configuration	analogous	to	the	multiplexer	tree	of	Figure2.21.	The	main	application	of	decoders	is	address	decoding,	where	A,	is	interpretedas	an	address	that	selects	a	specific	output	line	Z;	or	some	circuit	attached	to	z,.	Forexample,	decoders	are	used	in	RAMs	to	select	storage	cells	to	be	read	from	orwritten	into.	Another	common
application	of	decoders	is	that	of	routing	data	from	a	com-mon	source	to	one	of	several	destinations.	A	circuit	of	this	kind	is	called	a	demulti-plexer,	since	it	is,	in	effect,	the	inverse	of	a	multiplexer.	In	this	application	thecontrol	input	e	(enable)	of	the	decoder	is	viewed	as	a	1-bit	data	source	to	be	routedto	one	of	2"	destinations,	as	determined	by	the
address	applied	to	the	decoder.	Thusa	1/2"	decoder	is	also	a	2"-output,	1-bit	demultiplexer.	A	£:-output,	m-bit	demulti-plexer	can	be	readily	constructed	from	a	network	of	decoders.	Figure	2.24	shows	afour-output,	2-bit	demultiplexer	that	employs	two	1/4	decoders	of	the	type	in	Fig-ure	2.23.	Encoders.	An	encoder	is	a	circuit	intended	to	generate	the
address	or	index	ofan	active	input	line;	it	is	therefore	the	inverse	of	a	decoder.	Most	encoders	have	2input	data	lines	and	k	output	data	lines.	For	example,	when	k	=	3,	entering	a	data	Enable	e	1/4decoder	Z0	Z\	z2	z3(b)	Figure	2.23	A	1/4	decoder:	(a)	logic	diagram;	(b)	symbol.	Data	in	Select(address)	1/4decoder	1/4decoder	Data	out	Z:	Figure	2.24	A
four-output,	2-bit	demultiplexer.	91	CHAPTER	2	Design	Methodology	pattern	such	as	x0xix2x3x4x5x6x1	=	00000010	into	an	eight-input	encoder	shouldproduce	the	response	z2Z\Zq	=110,	denoting	the	number	6,	and	indicating	that	x6	=1.	Additional	(control)	outputs	are	necessary	to	distinguish	the	input	jc0	active	andno	input	active	states.	Moreover,
it	is	also	necessary	to	assign	priorities	to	the	inputlines	and	design	the	encoder	so	that	the	output	address	is	always	that	of	the	activeinput	line	with	the	highest	priority.	A	circuit	of	this	type	is	called	a	priority-encoder;	see	Figure	2.25.	A	fixed	priority	is	assigned	to	each	input	line	such	that	a,has	higher	priority	than	x	if	/	>j.	We	leave	the	logic	design	of
this	priority	encoderas	an	exercise	(problem	2.22).	Arithmetic	elements.	A	few	fairly	simple	arithmetic	functions,	notably	addi-tion	and	subtraction	of	fixed-point	numbers,	can	be	implemented	by	combinationalregister-level	components.	Most	forms	of	fixed-point	multiplication	and	divisionand	essentially	all	floating-point	operations	are	too	complex	to
be	realized	by	sin-gle	components	at	this	design	level.	However,	adders	and	subtracters	for	fixed-point	binary	numbers	are	basic	register-level	components	from	which	we	canderive	a	variety	of	other	arithmetic	circuits,	as	we	will	see	later.	Figure	2.26ashows	a	component	that	adds	two	4-bit	data	words	and	an	input	carry	bit:	it	iscalled	a	4-bit	adder.
(A	full	adder	is	sometimes	called	a	1-bit	adder.)	The	adder'scarry-in	and	carry-out	lines	allow	several	copies	of	this	component	to	be	chainedtogether	to	add	numbers	of	arbitrary	size;	note,	however,	that	the	addition	timeincreases	with	the	number	size.	(See	Chapter	4	for	coverage	of	the	design	of	addersand	more-complex	arithmetic	circuits).	Another
useful	arithmetic	component	is	amagnitude	comparator,	whose	function	is	to	compare	the	magnitudes	of*	twobinary	numbers.	Figure	2.26b	shows	the	overall	structure	of	a	4-bit	comparator.	92	SECTION	2.2The	Register	Level	Input	active	Inputs	Outputs	e	x0	x\	x2	xl	x4	*s	x6	*7	^2	Zl	zo	ia	0	d	d	d	d	d	d	d	d	(1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	d	rf	rf	d	d
d	d	1	1	1	1	1	d	rf	d	d	d	d	1	0	1	I	0	1	d	d	d	d	d	l	0	0	1	0	1	1	d	d	d	d	1	0	0	0	1	0	0	1	rf	d	d	1	0	0	0	0	0	1	1	1	d	d	1	0	0	0	0	0	0	1	0	1	zm-?>>--->zOx)	:=	(zm-\'Zm-2>---'Z\'Zo)	In	each	case	a	bit	of	stored	data	is	lost	from	one	end	of	the	shift	register,	while	anew	data	bit	x	is	brought	in	at	the	other	end.	In	its	simplest	form,	an	m-bit	shift	reg-ister	consists	of	m
flip-flops	each	of	which	is	connected	to	its	left	or	right	neighbor.Data	can	be	entered	1	bit	at	a	time	at	one	end	of	the	register	and	can	be	removed(read)	1	bit	at	a	time	from	the	other	end;	this	process	is	called	serial	input-output.Figure	2.30	shows	a	4-bit	shift	register	built	from	D	flip-flops.	A	right	shift	isaccomplished	by	activating	the	SHIFT	enable
line	connected	to	the	clock	input	CKof	each	flip-flop.	In	addition	to	the	serial	data	lines,	m	input	or	output	lines	areoften	provided	to	permit	parallel	data	transfers	to	or	from	the	shift	register.	Addi-tional	control	lines	are	required	to	select	the	serial	or	parallel	input	modes.	A	fur-ther	refinement	is	to	permit	both	left-	and	right-shift	operations.	95
CHAPTER	2	DesignMethodology	4	,'	LOAD	1	0	2-way,5	multiplexer	X	4	/	LOADCLOCKCLEAR	>	Register	Z	Z(*)	Figure	2.29	A	4-bit	D	register	with	parallel	load:	(a)	logic	diagram;	(b)	symbol.	96	SECTION	2.2The	Register	Level	SHIFTCLEAR	(a)	SHIFT	CLEAR	Shift	register	(b)	Figure	2.30	A	4-bit,	right-shift	register:	(a)	logic	diagram;	(b)	symbol.	Shift
registers	are	useful	design	components	in	a	number	of	applications,including	storage	of	serial	data	and	serial-to-parallel	or	parallel-to-serial	data	con-version.	They	can	also	be	used	to	perform	certain	arithmetic	operations	on	binarynumbers,	because	left-	(right-)	shifting	corresponds	to	multiplication	(division)	bytwo.	The	instruction	sets	of	most
computers	include	shift	operations.	Counters.	A	counter	is	a	sequential	circuit	designed	to	cycle	through	a	prede-termined	sequence	of	k	distinct	states	50,5,,...,	Sk_	j	in	response	to	signals	(1	-pulses)on	an	input	line.	The	k	states	represent	k	consecutive	numbers,	so	the	state	transitionscan	be	described	by	the	statement	SM	:=	5,	plus	1	(modulo	k)
Each	1-input	increments	the	state	by	one;	the	circuit	can	therefore	be	viewed	ascounting	the	input	Is.	Counters	come	in	many	different	varieties	depending	on	thenumber	codes	used,	the	modulus	k,	and	the	timing	mode	(synchronous	or	asynchro-nous).	Figure	2.31	shows	a	counter	designed	to	count	1-pulses	applied	to	its	COUNTENABLE	input	line.
The	counting	is	modulo-2";	that	is,	the	counter's	modulus	k	=	2",	and	it	has	2"	states	Sn,	S,	'2--1The	output	is	an	n-bit	binary	number	COUNT	=	Sj,	and	the	count	sequence	is	either	up	or	down,	as	determined	by	thecontrol	line	DOWN.	In	the	up-counting	mode	(DOWN=	0),	the	counter's	behavior	is	S,+1	:=	5,	plus	1	(modulo	2")	COUNT
ENABLECLEARDOWN	Modulo-2"up-downcounter	COUNT	Figure	2.31	A	modulo-2'1	up-down	counter.	97	CHAPTER	2	Design	Methodology	whereas	in	the	down-counting	mode	(DOWN	=	1),	the	behavior	becomes5,+1	:=	S	minus	1	(modulo	2")	In	some	counters	modulus-select	control	lines	can	alter	the	modulus;	such	countersare	termed
programmable.	Counters	have	several	applications	in	computer	design.	They	can	store	thestate	of	a	control	unit,	as	in	a	program	counter.	Incrementing	a	counter	provides	anefficient	means	of	generating	a	sequence	of	control	states.	Counters	can	also	gener-ate	timing	signals	and	introduce	precise	delays	into	a	system.	Buses.	A	bus	is	a	set	of	lines
(wires)	designed	to	transfer	all	bits	of	a	wordfrom	a	specified	source	to	a	specified	destination	on	the	same	or	a	different	IC;	thesource	and	destination	are	typically	registers.	A	bus	can	be	unidirectional,	that	is,capable	of	transmitting	data	in	one	direction	only,	or	it	can	be	bidirectional.Although	buses	perform	no	logical	function,	a	significant	cost	is
associated	withthem,	since	they	require	logic	circuits	to	control	access	to	them	and,	when	usedover	longer	distances,	signal	amplification	circuits	(drivers	and	receivers).	The	pinrequirements	and	gate	density	of	an	IC	increase	rapidly	with	the	number	of	externalbuses	connected	to	it.	If	these	buses	are	long,	the	cost	of	the	wires	or	cables	usedmust
also	be	taken	into	account.	To	reduce	costs,	buses	are	often	shared,	especially	when	they	connect	manydevices.	A	shared	bus	is	one	that	can	connect	one	of	several	sources	to	one	of	sev-eral	destinations.	Bus	sharing	reduces	the	number	of	connecting	lines	but	requiresmore	complex	bus-control	mechanisms.	Although	shared	buses	are	relativelycheap,
they	do	not	permit	simultaneous	transfers	between	different	pairs	ofdevices,	which	is	possible	with	unshared	or	dedicated	buses.	Bus	structures	areexplored	further	in	Chapter	7.	2.2.2	Programmable	Logic	Devices	Next	we	examine	a	class	of	components	called	programmable	logic	devices	orPLDs,	a	term	applied	to	ICs	containing	many	gates	or	other
general-purpose	cellswhose	interconnections	can	be	configured	or	"programmed"	to	implement	anydesired	combinational	or	sequential	function	[Alford	1989].	PLDs	are	relativelyeasy	to	design	and	inexpensive	to	manufacture.	They	constitute	a	key	technologyfor	building	application-specific	integrated	circuits	(ASICs).	Two	techniques,	areused	to
program	PLDs:	mask	programming,	which	requires	a	few	special	steps	in	98	SECTION	2.2The	Register	Level	the	IC	chip-manufacturing	process,	and	field	programming,	which	is	done	bydesigners	or	end	users	"in	the	field"	via	small,	low-cost	programming	units.	Somefieldprogrammable	PLDs	are	erasable,	implying	that	the	same	IC	can	be	repro-
grammed	many	times.	This	technology	is	especially	convenient	when	developingand	debugging	a	prototype	design	for	a	new	product.	Programmable	arrays.	The	connections	leading	to	and	from	logic	elements	ina	PLD	contain	transistor	switches	that	can	be	programmed	to	be	permanentlyswitched	on	or	switched	off.	These	switches	are	laid	out	in	two-
dimensional	arraysso	that	large	gates	can	be	implemented	with	minimum	IC	area.	The	programmablelogic	gates	of	a	PLD	array	are	represented	abstractly	in	Figure	2.32b,	with	x	denot-ing	a	programmable	connection	or	crosspoint	in	a	gate's	input	line.	The	absence	ofan	x	means	that	the	corresponding	connection	has	been	programmed	to	the	off	(dis-
connected)	state.	The	gate	structures	of	Figure	232b	can	be	combined	in	various	ways	to	imple-ment	logic	functions.	The	programmable	logic	array	(PLA)	shown	in	Figure	2.33is	intended	to	realize	a	set	of	combinational	logic	functions	in	minimal	SOP	form.It	consists	of	an	array	of	AND	gates	(the	AND	plane),	which	realize	a	set	of	prod-uct	terms
(prime	implicants),	and	a	set	of	OR	gates	(the	OR	plane),	which	formvarious	logical	sums	of	the	product	terms.	The	inputs	to	the	AND	gates	are	pro-grammable	and	include	all	the	input	variables	and	their	complements.	Hence	it	ispossible	to	program	any	desired	product	term	into	any	row	of	the	PLA.	For	exam-ple,	the	top	row	of	the	PLA	in	Figure
2.33	is	programmed	to	generate	the	termx2x3x4y}y2,	which	is	used	in	computing	the	output	D2\	the	last	row	is	programmedto	generate	xxx2yx	for	output	D,.	The	inputs	to	the	OR	gates	are	also	programma-ble,	so	each	output	column	can	include	any	subset	of	the	product	terms	producedby	the	rows.	The	PLA	in	Figure	2.33	realizes	the	combinational
part	C	of	the	4-bit-stream	adder	specified	in	Figure	2.13.	The	AND	plane	generates	the	51	six-vari-able	product	terms	according	to	the	SOP	design	given	in	Figure	2.14.	:L>(a)	X	X	>	x\	x2	*\	*2	(b)	Figure	2.32	AND	and	OR	gates:	(a)	normal	notation;	(b)	PLD	notation.	AND	planevy	w	•	w	w	w	1	A	i	OR	plane	>	>>	\	f	/	^	V	s,,...,P7	are	referredto	as	partial
products.	When	the	current	multiplier	bit	x1_i	is	1,	(2.18)	becomes	P,	:=P,	+	YM\	when	x7_,	=	0,	(2.18)	becomes	P,	:=	P,	+	0.	Hence	step	(2.18)	requires	add-ing	either	the	multiplicand	YM	or	0	to	the	current	partial	product	/>,.	The	factor	2~l	in(2.19)	indicates	that	P,	is	right-shifted	by	1	bit	after	each	addition;	this	factor	is	equiv-alent	to	division	by	2.
Note	that	each	add-and-shift	step	appends	1	bit	to	the	partialproduct,	which	therefore	grows	from	7	to	15	bits	(including	the	sign	bit	p0)	over	thecourse	of	the	multiplication.	With	these	preliminaries,	we	can	now	specify	the	main	components	needed	formultiplier8.	Two	8-bit	registers,	conventionally	denoted	Q	(for	multiplier-quotient)	andM	(for
multiplicand),	are	required	to	store	X	and	Y,	respectively.	A	double-length,	16-bit	register	A	(for	accumulator)	stores	the	P,'s;	this	standard	length	is	more	convenientthan	the	actual	15-bit	maximum	size	of	P.	A	7-bit	combinational	adder	is	used	for	theaddition	specified	by	(2.18)	(The	serial	adder	of	Figure	2.12	could	also	be	used,	but	itwould	be	about
seven	times	slower.)	The	adder	must	have	its	output	and	one	input	con-nected	to	A,	while	its	other	input	must	be	switched	between	M	and	zero.	The	1-bitright-shift	function	(2.19)	can	be	conveniently	obtained	by	constructing	A	from	a	right-shift	register	with	parallel	IO.	As	specified	by	(2.18),	addition	is	controlled	by	bit	x1_i,	which	is	stored	in	the
Qregister.	The	multipliers	control	unit	must	be	able	to	scan	the	contents	of	Q	from	rightto	left	in	the	course	of	the	multiplication.	If	Q	is	a	right-shift	register,	then	x1_i	canalways	be	obtained	from	Q's	right-most	flip-flop	Q[l]	by	right-shifting	Q	before	thenext	x1_l	is	needed.	Consequently,	XSi	is	gradually	reduced	from	7	to	0	bits	while	Pt	isexpanding
from	7	to	14	bits,	also	by	right-shifting.	Hence	we	can	combine	A	and	Q	intoa	single	16-bit,	right-shift	register,	the	left	half	of	which	is	A	while	the	right	half	is	Q.The	multiplier	is	completed	by	the	inclusion	of	external	data	buses	INBUS	and	OUTBUS	and	a	control	unit,	which	contains	a	3-bit	iteration	counter	named	COUNT.	Theresulting	circuit	has
the	structure	depicted	in	Figure	2.41.	A	complete	HDL	descriptionof	the	multiplication	algorithm	developed	above	appears	in	Figure	2.39.	At	the	core	of	our	design	is	the	adder	and	the	A.Q	register	that	implement	(2.18)and	(2.19).	respectively.	The	output-carry	signal	cOVT	of	the	adder	is	the	most	signifi-cant	bit	of	an	8-bit	sum	and	so	is	connected	to
the	data	input	of	A[0}.	The	counterCOUNT	is	incremented	and	tested	at	the	end	of	each	add-shift	step	to	determine	if	theaddshift	phase	should	terminate.	When	COUNT	is	found	to	contain	7,	PSi	occupiesbits	1:14	of	the	register-pair	A.Q;	that	is,	bits	A[1:7].Q[0:6].	The	sign	bit	p0	is	thencomputed	from	x0	and	y0,	which	are	stored	in	Q[l]	and	M[0],
respectively,	and	p0	isplaced	inA[0].	At	the	same	time	0	is	written	into	Q[l]	to	expand	the	final	product	from15	to	16	bits.	Figure	2.42	shows	the	complete	step-by-step	multiplication	process	fortwo	sample	fractions	X	=	10110011	and	Y	=	01010101.	The	sign	bit	x0	=	1	of	X	(indi-cating	that	it	is	a	negative	number)	is	marked	by	an	underline.	The	data	in
A.Q	to	theleft	of	.v0	is	the	current	partial	product	P,.	The	control	unit	of	Figure	2.41	is	designed	by	first	identifying	from	the	formaldescription	(Figure	2.39)	all	the	control	signals	and	control	points	needed	to	implementthe	specified	register-transfer	operations.	Figure	2.43	lists	a	possible	set	of	control	113	CHAPTER	2	Design	Methodology
Controlsignal	Operation	controlled	Clear	accumulator	A	(reset	to	0).	Clear	counter	COUNT	(reset	to	0).	LoadA[0].	Load	multiplicand	register	M	from	INBUS.	Load	multiplier	register	Q	from	INBUS.	Load	main	adder	outputs	into	A[1:7].	Select	M	or	0	to	apply	to	right	input	of	adder.	Right-shift	A.	Q.	Increment	counter	COUNT.	Select	COUTot	Af[0]	xor
Q[l\	to	load	into	A[0].	Clear	Q[l\.	Transfer	contents	of	A	to	OUTBIS	Transfer	contents	of	Q	to	OUTBUS.	Figure	2.43	Control	signals	for	multipliers.	114	SECTION	2.3	The	Processor	Level	M[l:7]	OLTBUS	Figure	2.44	Implementation	of	some	control	points	of	multiplier8.	signals	for	the	multiplier.	In	some	cases	several	control	signals	implement	a
particularoperation.	For	instance,	the	add	operation	employs	c6	to	select	the	adder's	right	inputoperand,	c9	to	select	cOUT	for	loading	into	A[0],	and	c2	and	c5	to	actually	load	the	8-bitsum	into	v4[0:7].	The	number	of	distinguished	control	signals	will	vary	with	the	detailsof	the	logic	used	to	implement	the	control	unit.	Figure	2.44	shows	a
straightforwardimplementation	of	the	control	logic	associated	with	the	accumulator	and	adder	subcir-cuits	using	the	control	signals	defined	in	Figure	2.43.	2.3	THE	PROCESSOR	LEVEL	The	processor	or	system	level	is	the	highest	in	the	computer	design	hierarchy.	It	isconcerned	with	the	storage	and	processing	of	blocks	of	information	such	as	pro-
grams	and	data	files.	The	components	at	this	level	are	complex,	usually	sequential,circuits	that	are	based	on	VLSI	technology.	Processor-level	design	is	very	much	aheuristic	process,	as	there	is	little	design	theory	at	this	level	of	abstraction.	2.3.1	Processor-Level	Components	115	The	component	types	recognized	at	the	processor	level	fall	into	four
main	groups:processors,	memories,	IO	devices,	and	interconnection	networks;	see	Figure	2.45.In	this	section	we	give	only	a	brief	summary	of	the	characteristics	of	processor-level	components;	they	are	examined	individually	and	in	much	greater	depth	inlater	chapters.	CHAPTER	2	Design	Methodology	Central	processing	unit.	We	define	a	CPU	to	be	a
general-purpose,	instruc-tion-set	processor	that	has	overall	responsibility	for	program	interpretation	andexecution	in	a	computer	system.	The	qualifier	general-purpose	distinguishes	CPUsfrom	other,	more	specialized	processors,	such	as	IO	processors	(IOPs),	whosefunctions	are	restricted.	An	instruction-set	processor	is	characterized	by	the	factthat	it
operates	on	word-organized	instructions	and	data,	which	the	processorobtains	from	an	external	memory	that	also	stores	results	computed	by	the	proces-sor.	Most	contemporary	CPUs	are	microprocessors,	implying	that	their	physicalimplementation	is	a	single	VLSI	chip.	Figure	2.46	shows	the	essential	internal	organization	of	a	CPU	at	the
registerlevel.	The	CPU	contains	the	logic	needed	to	execute	its	particular	instruction	setand	is	divided	into	datapath	and	control	units.	The	control	part	(the	I-unit)	gener-ates	the	addresses	of	instructions	and	data	stored	in	external	memory.	In	this	par-ticular	system	a	cache	memory	is	interposed	between	the	main	memory	M	and	theCPU.	The	cache
is	a	fast	buffer	memory	designed	to	hold	an	active	portion	of	thesystem's	address	space;	it	is	often	placed,	wholly	or	in	part,	on	the	same	IC	asthe	CPU.	Each	memory	request	generated	by	the	CPU	is	first	directed	to	the	cache.If	the	required	information	is	not	currently	assigned	to	the	cache,	the	request	is	re-directed	to	M	and	the	cache	is
automatically	updated	from	M.	The	I-unit	fetchesinstructions	from	the	cache	or	M	and	decodes	them	to	derive	the	control	signalsneeded	for	their	execution.	The	CPU's	datapath	(E-unit)	has	the	arithmetic-logiccircuits	that	execute	most	instructions;	it	also	has	a	set	of	registers	for	temporarydata	storage.	The	CPU	manages	a	system	bus,	which	is	the
main	communicationlink	among	the	CPU-cache	subsystem,	main	memory,	and	the	IO	devices.	Micro-processor(CPU)	Mainmemory	Interconnection	network(system	bus)	Input/output	devices(keyboard,	video	display,secondary	memory,	etc.)	Figure	2.45	Major	components	of	a	computer	system.	116	Main	memory	M	and	IO	system	SECTION	2.3	The
Processor	Level	System	bus	Li	j_	*!	i\	Cache	If	/i	/i	IF	Programcounter	PC	Instructionregister	IR	Arithmetic-logic	unit	Registerfile	t	i	Addressgeneration	|#—T	Instructiondecoding	Prun	ogram	ccit	(I-unit	J	i	>n)	i	i	■■	1	>	1	1	1	i_	—	tro	s	Control	signal	Datapath(E-unit)	Figure	2.46	Internal	organization	of	a	CPU	and	cache	memory.	The	CPU	is	a
synchronous	sequential	circuit	whose	clock	period	is	the	com-puter's	basic	unit	of	time.	In	one	clock	cycle	the	CPU	can	perform	a	register-transferoperation,	such	as	fetching	an	instruction	word	from	M	via	the	system	bus	and	load-ing	it	into	the	instruction	register	IR.	This	operation	can	be	expressed	formally	by	IR	:=	M(PC);	where	PC	is	the	program
counter	the	CPU	uses	to	hold	the	expected	address	of	thenext	instruction	word.	Once	in	the	I-unit,	an	instruction	is	decoded	to	determine	theactions	needed	for	its	execution;	for	example,	perform	an	arithmetic	operation	ondata	words	stored	in	CPU	registers.	The	I-unit	then	issues	the	sequence	of	controlsignals	that	enables	execution	of	the
instruction	in	question.	The	entire	process	offetching,	decoding,	and	executing	an	instruction	constitutes	the	CPU's	instructioncycle.	Memories.	CPUs	and	other	instruction-set	processors	operate	in	conjunctionwith	external	memories	that	store	the	programs	and	data	required	by	the	proces-sors.	Numerous	memory	technologies	exist,	and	they	vary
greatly	in	cost	and	per-formance.	The	cost	of	a	memory	device	generally	increases	rapidly	with	its	speedof	operation.	The	memory	part	of	a	computer	can	be	divided	into	several	majorsubsystems:	1.	Main	memory	M,	consisting	of	relatively	fast	storage	ICs	connected	directly	to,and	controlled	by,	the	CPU.	2.	Secondary	memory,	consisting	of	less
expensive	devices	that	have	very	highstorage	capacity.	These	devices	often	involve	mechanical	motion	and	so	aremuch	slower	than	M.	They	are	generally	connected	indirectly	(via	M)	to	theCPU	and	form	part	of	the	computer's	10	system.	3.	Many	computers	have	a	third	type	of	memory	called	a	cache,	which	is	posi-tioned	between	the	CPU	and	main
memory.	The	cache	is	intended	to	furtherreduce	the	average	time	taken	by	the	CPU	to	access	the	memory	system.	Someor	all	of	the	cache	may	be	integrated	on	the	same	IC	chip	as	the	CPU	itself.	Main	memory	M	is	a	word-organized	addressable	random-access	memory(RAM).	The	term	random	access	stems	from	the	fact	that	the	access	time	for
everylocation	in	M	is	the	same.	Random	access	is	contrasted	with	serial	access,	wherememory	access	times	vary	with	the	location	being	accessed.	Serial	access	memo-ries	are	slower	and	less	expensive	than	RAMs;	most	secondary-memory	devicesuse	some	form	of	serial	access.	Because	of	their	lower	operating	speeds	and	serial-access	mode,	the
manner	in	which	the	stored	information	is	organized	in	secondarymemories	is	more	complex	than	the	simple	word	organization	of	main	memory.Caches	also	use	random	access	or	an	even	faster	memory-accessing	method	calledassociative	or	content	addressing.	Memory	technologies	and	the	organization	ofstored	information	are	covered	in	Chapter	6.
IO	devices.	Input-output	devices	are	the	means	by	which	a	computer	commu-nicates	with	the	outside	world.	A	primary	function	of	10	devices	is	to	act	as	datatransducers,	that	is,	to	convert	information	from	one	physical	representation	toanother.	Unlike	processors,	10	devices	do	not	alter	the	information	content	ormeaning	of	the	data	on	which	they
act.	Since	data	is	transferred	and	processedwithin	a	computer	system	in	the	form	of	digital	electrical	signals,	input	(output)devices	transform	other	forms	of	information	to	(from)	digital	electrical	signals.Figure	2.47	lists	some	widely	used	10	devices	and	the	information	media	theyinvolve.	Many	of	these	devices	use	electromechanical	technologies;
hence	theirspeed	of	operation	is	slow	compared	with	processor	and	main-memory	speeds.Although	the	CPU	can	take	direct	control	of	an	IO	device	it	is	often	under	theimmediate	control	of	a	special-purpose	processor	or	control	unit	that	directs	theflow	of	information	between	the	IO	device	and	main	memory.	The	design	of	10systems	is	considered	in
Chapter	7.	Interconnection	networks.	Processor-level	components	communicate	byword-oriented	buses.	In	systems	with	many	components,	communication	may	becontrolled	by	a	subsystem	called	an	interconnection	network;	terms	such	as	switch-ing	network,	communications	controller,	and	bus	controller	are	also	used	in	thiscontext.	The	function	of
the	interconnection	network	is	to	establish	dynamic	com-munication	paths	among	the	components	via	the	buses	under	its	control.	For	costreasons,	these	paths	are	usually	shared.	Only	two	communicating	devices	canaccess	and	use	a	shared	bus	at	any	time,	so	contention	results	when	several	systemcomponents	request	use	of	the	bus.	The
interconnection	network	resolves	suchcontention	by	selecting	one	of	the	requesting	devices	on	some	priority	basis	andconnecting	it	to	the	bus.	The	interconnection	network	may	place	the	other	request-ing	devices	in	a	queue.	117	CHAPTER	2	Design	Methodology	118	SECTION	2.3	The	Processor	Level	Type	Medium	to/from	which	IO	device	IO	device
Input	Output	transforms	digital	electrical	signals	Analog-digital	converter	X	Analog	(continuous)	electrical	signals	CD-ROM	drive	X	Characters	^nd	coded	images)	on	optical	disk	Document	scanner/reader	X	Dot-matrix	display	panel	Keyboard/keypad	Images	on	paper	X	X	Images	on	screen	Characters	on	keyboard	Laser	printer	X	Images	on	paper
Loudspeaker	X	Spoken	words	and	sounds	Magnetic-disk	drive	X	X	Characters	(and	coded	images)	on	magnetic	disk	Magnetic-tape	drive	X	X	Characters	(and	coded	images)	on	magnetic	tape	Microphone	X	Spoken	words	and	sounds	Mouse/touchpad	X	Spatial	position	on	pad	Figure	2.47	Some	representative	IO	devices.	Simultaneous	requests	for
access	to	some	unit	or	bus	result	from	the	fact	thatcommunication	between	processor-level	components	is	generally	asynchronous	inthat	the	components	cannot	be	synchronized	directly	by	a	common	clock	signal.This	synchronization	problem	can	be	attributed	to	several	causes.	•	A	high	degree	of	independence	exists	among	the	components.	For
example,CPUs	and	IOPs	execute	different	types	of	programs	and	interact	relatively	infre-quently	and	at	unpredictable	times.	•	Component	operating	speeds	vary	over	a	wide	range.	CPUs	operate	from	1	to	10times	faster	than	main-memory	devices,	while	main-memory	speeds	can	bemany	orders	of	magnitude	faster	than	IO-device	speeds.	•	The
physical	distance	separating	the	components	can	be	too	large	to	permit	syn-chronous	transmission	of	information	between	them.	Bus	control	is	one	of	the	functions	of	a	processor	such	as	a	CPU	or	an	IOP.	AnIOP	controls	a	common	IO	bus	to	which	many	IO	devices	are	connected.	The	IOPis	responsible	for	selecting	a	device	to	be	connected	to	the	IO
bus	and	from	there	tomain	memory.	It	also	acts	as	a	buffer	between	the	relatively	slow	IO	devices	andthe	relatively	fast	main	memory.	Larger	systems	have	special	processors	whosesole	function	is	to	supervise	data	transfers	over	shared	buses.	2.3.2	Processor-Level	Design	Processor-level	design	is	less	amenable	to	formal	analysis	than	is	design	at	the
reg-ister	level.	This	is	due	in	part	to	the	difficulty	of	giving	a	precise	description	of	thedesired	system	behavior.	To	say	that	the	computer	should	execute	efficiently	allprograms	supplied	to	it	is	of	little	help	to	the	designer.	The	common	approach	to	design	at	this	level	is	to	take	a	prototype	design	of	known	performance	and	modifyit	where	necessary	to
accommodate	new	technologies	or	meet	new	performancerequirements.	The	performance	specifications	usually	take	the	following	form:	•	The	computer	should	be	capable	of	executing	a	instructions	of	type	b	per	second.	•	The	computer	should	be	able	to	support	c	memory	or	10	devices	of	type	d.	•	The	computer	should	be	compatible	with	computers
of	type	e.	•	The	total	cost	of	the	system	should	not	exceed/	Even	when	a	new	computer	is	closely	based	on	a	known	design,	it	may	not	be	pos-sible	to	predict	its	performance	accurately.	This	is	due	to	our	lack	of	understandingof	the	relation	between	the	structure	of	a	computer	and	its	performance.	Perfor-mance	evaluation	must	generally	be	done
experimentally	during	the	design	pro-cess,	either	by	computer	simulation	or	by	measurement	of	the	performance	of	acopy	of	the	machine	under	working	conditions.	Reflecting	its	limited	theoreticalbasis,	only	a	small	amount	of	useful	performance	evaluation	can	be	done	via	math-ematical	analysis	[Kant	1992].	Prototype	structures.	We	view	the	design
process	as	involving	two	majorsteps:	First	select	a	prototype	design	and	adapt	it	to	satisfy	the	given	performanceconstraints.	Then	determine	the	performance	of	the	proposed	system.	If	unsatisfac-tory,	modify	the	design	and	repeat	this	step;	continue	until	an	acceptable	design	isobtained.	This	conservative	approach	to	computer	design	has	been
widely	followedand	accounts	in	part	for	the	relatively	slow	evolution	of	computer	architecture.	It	israre	to	find	a	successful	computer	structure	that	deviates	substantially	from	thenorm.	The	need	to	remain	compatible	with	existing	hardware	and	software	stan-dards	also	influences	the	adherence	to	proven	designs.	Computer	owners	areunderstandably
reluctant	to	spend	money	retraining	users	and	programmers,	orreplacing	well-tested	software.	The	systems	of	interest	here	are	general-purpose	computers,	which	differ	fromone	another	primarily	in	the	number	of	components	used	and	their	autonomy.	Thevariety	of	interconnection	or	communication	structures	used	is	fairly	small.	Wewill	represent
these	structures	by	means	of	block	diagrams	that	are	basically	graphs(section	2.1.1).	Figure	2.48	shows	the	structure	that	applies	to	first-generation	com-puters	and	many	small,	modern	microprocessor-based	systems.	The	addition	ofspecial-purpose	10	processors	typical	of	the	second	and	subsequent	generations	is	119	CHAPTER	2	Design
Methodology	Centralocessing	unit	CPU	M	Main	memory	Systembus	IO	devices	ICN	D,	D2	D*	Figure	2.48	Basic	computer	structure	120	SECTION	2.3	The	Processor	Level	Centralprocessing	unit	Cachememory	Systembus	IO	processors	IO	devices	CPU	CM	IOP,	Mainmemory	ICN	IOP,	Figure	2.49	Computer	with	cache	and	IOprocessors.	shown	in
Figure	2.49.	Here	ICN	denotes	an	interconnection	(switching)	networkthat	controls	memory-processor	communication.	Figure	2.50	shows	a	prototypestructure	employing	two	CPUs;	it	is	therefore	a	multiprocessor.	The	uniprocessorsystems	of	Figures	2.48	and	2.49	are	special	cases	of	this	structure.	Even	morecomplex	structures	such	as	computer
networks	can	be	obtained	by	linking	severalcopies	of	the	foregoing	prototype	structures.	Performance	measurement.	Many	performance	figures	for	computers	arederived	from	the	characteristics	of	its	CPU.	As	observed	in	section	1.3.2,	CPU	Centralprocessing	units	Cachememories	Crossbarswitchingnetwork	CPU,	—|	CM,	CPU,	—i	CM,	Main	memory
M,	M2	ICN	IOdevices	IOprocessors	IOP,	D,	IOP2	D2	IOP„	D3	D*	Figure	2.50	Computer	with	multiple	CPUs	and	main	memory	banks.	speed	can	be	measured	easily,	but	roughly,	by	its	clock	frequency/in	megahertz.Other,	and	usually	better,	performance	indicators	are	MIPS,	which	is	the	averageinstruction	execution	speed	in	millions	of	instructions	per
second,	and	CPI,	whichis	the	average	number	of	CPU	clock	cycles	required	per	instruction.	As	discussedin	section	1.3.2,	these	performance	measures	are	related	to	the	average	time	7*	inmicroseconds	(us)	required	to	execute	N	instructions	by	the	formula	NxCPI	Hence	the	average	time	tE	to	execute	an	instruction	is	tE=T/N=	CPI/f	us	While	/	depends
mainly	on	the	IC	technology	used	to	implement	the	CPU,	CPIdepends	primarily	on	the	system	architecture.	We	can	get	another	perspective	on	tE	by	considering	the	distribution	of	instruc-tions	of	different	types	and	speeds	in	typical	program	workloads.	Let	/,,	I2,	...,	/„be	a	set	of	representative	instruction	types.	Let	f,	denote	the	average	execution
time(us)	of	an	instruction	of	type	/,	and	let	pi	denote	the	occurrence	probability	of	type-/,	instructions	in	representative	object	code.	Then	the	average	instruction	executiontime	tE	is	given	by	121	CHAPTER	2	Design	Methodology	■	I	PA	us	(2.20)	The	/,	figures	can	be	obtained	fairly	easily	from	the	CPU	specifications,	but	accu-rate	Pj	data	must	usually
be	obtained	by	experiment.	The	set	of	instruction	types	selected	for	(2.20)	and	their	occurrence	probabili-ties	define	an	instruction	mix.	Numerous	instruction	mixes	have	been	publishedthat	represent	various	computers	and	their	workloads	[Siewiorek,	Bell,	and	Newell1982].	Figure	2.51	gives	some	recent	data	collected	for	two	representative
Probability	ol	occurrence	Program	A	Program	B	Instruction	type	(commercial)	(scientific)	Memory	load	0.24	0.29	Memory	store	0.12	0.15	Fixed-point	operations	0.27	0.15	Floating-point	operations	0.00	0.19	Branch	0.17	0.10	Other	0.20	0.12	Figure	2.51	Representative	instruction-mix	data.Source:	McGrory,	Carlton,	and	Askins	1992.	SECTION	2.3
The	Processor	Level	122	programs	running	on	computers	employing	the	Hewlett-Packard	PA-RISC	architecture	under	the	UNIX	operating	system	[McGrory,	Carlton,	and	Askins	1992].The	execution	probabilities	are	derived	from	counting	the	number	of	times	aninstruction	of	each	type	is	executed	while	running	each	program;	instructions	fromboth
the	application	program	and	the	supporting	system	code	are	included	in	thiscount.	Program	A	is	a	program	TPC-A	designed	to	represent	commercial	on-linetransaction	processing.	Program	B	is	a	scientific	program	FEM	that	performsfinite-element	modeling.	In	each	case,	memory-access	instructions	(load	andstore)	account	for	more	than	a	third	of	all
the	instructions	executed.	The	computa-tion-intensive	scientific	program	makes	heavy	use	of	floating-point	instructions,whereas	the	commercial	program	employs	fixed-point	instructions	only.	Condi-tional	and	unconditional	branch	instructions	account	for	1	in	6	instructions	in	pro-gram	A	and	for	1	in	10	instructions	in	program	B.	Other	published
instructionmixes	suggest	that	as	many	as	1	in	4	instructions	can	be	of	the	branch	type.	A	few	performance	parameters	are	based	on	other	system	components,	espe-cially	memory.	Main	memory	and	cache	size	in	megabytes	(MB)	can	provide	arough	indication	of	system	capacity.	A	memory	parameter	related	to	computingspeed	is	bandwidth,	defined
as	the	maximum	rate	in	millions	of	bits	per	second(Mb/s)	at	which	information	can	be	transferred	to	or	from	a	memory	unit.	Memorybandwidth	affects	CPU	performance	because	the	latter's	processing	speed	is	ulti-mately	limited	by	the	rate	at	which	it	can	fetch	instructions	and	data	from	its	cacheor	main	memory.	Perhaps	the	most	satisfactory
measure	of	computer	performance	is	the	cost	ofexecuting	a	set	of	representative	programs	on	the	target	system.	This	cost	can	bethe	total	execution	time	T,	including	contributions	from	the	CPU,	caches,	mainmemory,	and	other	system	components.	A	set	of	actual	programs	that	are	represen-tative	of	a	particular	computing	environment	can	be	used
for	performance	evalua-tion.	Such	programs	are	called	benchmarks	and	are	run	by	the	user	on	a	copy(actual	or	simulated)	of	the	computer	being	evaluated	[Price	1989].	It	is	also	usefulto	devise	artificial	or	synthetic	benchmark	programs,	whose	sole	purpose	is	toobtain	data	for	performance	evaluation.	The	program	TPC-A	providing	the	data
forprogram	A	in	Figure	2.51	is	an	example	of	a	synthetic	benchmark.	EXAMPLE	2.8	PERFORMANCE	COMPARISON	OF	SEVERAL	COMPUTERS	[MCLELLAN	1993].	Figure	2.52	presents	some	published	data	on	the	performanceof	three	machines	manufactured	by	Digital	Equipment	Corp.	in	the	early	1990s,based	on	various	versions	of	its	64-bit	Alpha
microprocessor.	The	SPEC	(StandardPerformance	Evaluation	Cooperative)	ratings	are	derived	from	a	set	of	benchmarkprograms	that	computer	companies	use	to	compare	their	products.	The	SPECint92and	SPECfp92	parameters	indicate	instruction	execution	speed	relative	to	a	standard-ized	1-MIPS	computer	(a	1978-vintage	Digital	VAX	11/780
minicomputer)	whenexecuting	benchmark	programs	involving	integer	(fixed	point)	and	floating-pointoperations,	respectively.	Hence	the	SPEC	figures	approximate	MIPS	measurementsfor	two	major	classes	of	application	programs	like	those	of	Figure	2.51.	The	remain-ing	data	in	Figure	2.52	are	relative	performance	figures	for	executing	some
otherwell-known	benchmark	programs,	most	aimed	at	scientific	computing.	Data	of	this	sort	are	better	suited	to	measuring	relative	rather	than	absolute	perfor-mance.	For	example,	suppose	we	wish	to	compare	the	performance	of	the	Digital	3000and	10000	machines	listed	in	Figure	2.52.	The	ratio	of	their	SPECint92	MIPS	numbersis	104.3/63.8	=
1.65.	The	corresponding	ratios	for	the	other	five	benchmarks	range	DEC	3000	DEC	4000	DEC	10000	Performance	measure	Model	400	Model	610	Model	610	CPU	clock	frequency	(MHz)	133	160	200	Cache	size	(MB)	0.5	1	4	SPECint92	63.8	81.2	104.3	SPECfp92	112.2	143.1	200.4	Linpack	1000	x	1000	90	114	155	Perfect	BM	suite	18.1	22.9	28.6
Cernlib	16.9	21.0	26.0	Livermore	loops	18.7	22.9	28.1	Figure	2.52	Performance	comparison	of	three	computers	based	on	the	Digital	Alpha	processor.	Source:	McLellan	1993.	from	1.50	to	1.79,	suggesting	that	the	Digital	10000	is	about	two-thirds	faster	than	theDigital	3000.	Note	also	that	the	ratio	of	their	clock	frequencies	is	200/133	=	1.50.
Queueing	models.	In	order	to	give	a	flavor	of	analytic	performance	modeling,we	outline	an	approach	based	on	queueing	theory.	The	origins	of	this	branch	ofapplied	probability	theory	are	usually	traced	to	the	analysis	of	congestion	in	tele-phone	systems	made	by	the	Danish	engineer	A.	K.	Erlang	(1878-1929)	in	1909.Our	treatment	is	quite	informal;	the
interested	reader	is	referred	to	[Allen	1980;Robertazzi	1994]	for	further	details.	The	queueing	model	that	we	will	consider	is	the	single-queue,	single-servercase	depicted	in	Figure	2.53;	this	is	known	as	the	M/M/l	model	for	historical	rea-sons.	It	represents	a	"server"	such	as	a	CPU	or	a	computer	with	a	set	of	tasks	(pro-grams)	to	be	executed.	The
tasks	are	activated	or	arrive	at	random	times	and	arequeued	in	memory	until	they	can	be	processed	or	"serviced"	by	the	CPU	on	a	first-come	first-served	basis.	The	key	parameters	of	the	model	are	the	rate	at	whichtasks	requiring	service	arrive	and	the	rate	at	which	the	tasks	are	serviced,	both	mea-sured	in	tasks/s.	The	mean	or	average	arrival	and
service	rates	are	conventionallydenoted	by	A	(lambda)	and	p	(mu),	respectively.	The	actual	arrival	and	servicerates	vary	randomly	around	these	mean	values	and	are	represented	by	probability	123	CHAPTER	2	Design	Methodology	Sharedresource	"	Items	1r	Queue	Serviced	Server	items	Quel	leing	sy	stem	Figure	2.53	Simple	queueingmodel	of;.
computer.	The	Processor	Level	124	distributions.	The	latter	are	chosen	to	approximate	the	actual	behavior	of	the	sys_____.,	_	,	tem	being	modeled;	how	well	they	do	so	must	be	determined	by	observation	and	SECTION	1.5	J	J	measurement.	The	symbol	p	(rho)	denotes	A/p	and	represents	the	mean	utilization	of	theserver,	that	is,	the	fraction	of	time	it	is
busy,	on	average.	For	example,	if	an	averageof	two	tasks	arrive	per	second	(X	=	2)	and	the	server	can	process	them	at	an	averagerate	of	eight	tasks	per	second	(p	=	8),	then	p	=	2/8	=	0.25.	The	arrival	of	tasks	at	the	system	is	a	random	process	characterized	by	theinterarrival	time	distribution	px{t)	defined	as	the	probability	that	at	least	one
taskarrives	during	a	period	of	length	t.	The	M/M/l	case	assumes	a	Poisson	arrival	pro-cess—named	after	the	French	mathematician	Simeon-Denis	Poisson	(1781-1840)—for	which	the	probability	distribution	is	Pl(t)	=	l-e~h	This	exponential	distribution	has	px(t)	=	0	when	t	=	0.	As	t	increases,	px(t)	increasessteadily	toward	1	at	a	rate	determined	by	X.
Exponential	distributions	characterizethe	randomness	of	many	queueing	models	quite	well.	They	are	also	mathematicallytractable	and	lead	to	simple	formulas	for	various	performance-related	quantities	ofinterest.	It	is	therefore	usual	to	model	the	behavior	of	the	server	(the	service	pro-cess)	by	an	exponential	distribution	also.	Let	ps(t)	be	the
probability	that	the	ser-vice	required	by	a	task	is	completed	by	the	CPU	in	time	t	or	less	after	its	removalfrom	the	queue.	Then	the	service	process	is	characterized	by	ps(t)=\-e^'	Various	performance	parameters	can	characterize	the	steady-state	performanceof	the	single-server	queueing	system	under	the	foregoing	assumptions.	•	The	utilization	p	=
A/p	of	the	server,	that	is,	the	average	fraction	of	time	it	isbusy.	•	The	average	number	of	tasks	queued	in	the	system,	including	tasks	waiting	forservice	and	those	actually	being	served.	The	parameter	is	called	the	mean	queuelength	and	is	denoted	by	/Q.	It	can	be	shown	[Robertazzi	1994]	that	/Q	=	p/(1-P)	(2.21)	•	The	average	time	that	arriving	tasks
spend	in	the	system,	both	waiting	for	serviceand	being	served,	which	is	called	the	mean	waiting	time	tQ.	The	quantities	rQ	and/q	are	related	directly	as	follows.	An	average	task	X	passing	through	the	systemunder	steady-state	conditions	should	encounter	the	same	number	of	waiting	tasks/q	when	it	enters	the	system	as	it	leaves	behind	when	it	departs
from	the	systemafter	being	serviced.	The	number	left	behind	is	Xtq,	which	is	the	number	of	tasksthat	enter	the	system	at	rate	X	during	the	period	tQ	when	X	is	present.	Hence	weconclude	that	/Q	=	Xtq,	in	other	words,	tQ	=	Iq/X	(2.22)	Equation	(2.22)	is	called	Little's	equation.	It	is	valid	for	all	types	of	queueing	sys-tems,	not	just	the	M/M/l	model.
Combining	(2.21)	and	(2.22),	we	get	tQ	=	l/(p	-	X)	(2.23)	The	quantities	/Q	and	tQ	refer	to	tasks	that	are	either	waiting	for	access	to	theserver	or	are	actually	being	served.	The	mean	number	of	tasks	waiting	in	thequeue	excluding	those	being	served	is	denoted	by	/w,	while	rw	denotes	the	meantime	spent	waiting	in	the	queue,	excluding	service	time.
(The	subscript	W	standsfor	"waiting.")	The	mean	utilization	of	the	server	in	an	M/M/l	system,	that	is,	themean	number	of	tasks	being	serviced,	is	X/\i;	hence	subtracting	this	from	/Qyields	/w:	^2	'w	=	'o	-	P	=	\l(\L-X)	(2.24)	Similarly	125	CHAPTER	2	Design	Methodology	'w	=	'o	-	1/M-	=	H(H-k)	(2.25)	where	1/p	is	the	mean	time	it	takes	to	service	a	task.
Comparing	(2.24)	and	(2.25)we	see	that	fw	=	lw/X;	therefore,	Little's	equation	holds	for	both	the	Q	and	the	Wsubscripts.	To	illustrate	the	use	of	the	foregoing	formulas,	consider	a	server	computer	thatis	processing	jobs	in	a	way	that	can	be	approximated	by	the	M/M/l	model.	Arrivingjobs	are	queued	in	main	memory	until	they	are	fully	executed	in	one
step	by	theCPU,	which	therefore	is	the	server.	New	jobs	arrive	at	an	average	rate	of	10	perminute,	and	the	computer	is,	on	the	average,	idle	25	percent	of	the	time.	We	ask	twoquestions:	What	is	the	average	time	T	that	each	job	spends	in	the	computer?	What	isthe	average	number	of	jobs	N	in	main	memory	that	are	waiting	to	begin	execution?To
answer,	we	assume	that	steady-state	conditions	prevail,	from	which	it	followsthat	T	is	tq,	and	N	is	/w.	Since	the	system	is	busy	75	percent	of	the	time,	p	=	X/]i	=0.75.	We	are	given	that	X	=	10	jobs/min;	hence	the	service	rate	p.	is	40/3	jobs/min.Substituting	into	(2.23)	yields	T=	tQ=	1/(40/3	-	10)	=	0.3	min.	From	Little's	equa-tion,	N=lQ	=	XtQ	=	3;
hence	by	(2.25),	/w	=	3	-	0.75	=	2.25	jobs.	EXAMPLE	2.9	ANALYSIS	OF	SHARED	COMPUTER	USAGE	[ALLEN	1980].	A	small	company	has	a	computer	system	with	a	single	terminal	that	is	shared	by	its	engineeringstaff.	An	average	of	10	engineers	use	the	terminal	during	an	eight-hour	work	day,	andeach	user	occupies	the	terminal	for	an	average	of
30	minutes,	mostly	for	simple	androutine	calculations.	The	company	manager	feels	that	the	computer	is	underutilized,since	the	system	is	idle	an	average	of	three	hours	a	day.	The	users,	however,	complainthat	it	is	overutilized,	since	they	typically	wait	an	hour	or	more	to	gain	access	to	the	ter-minal;	they	want	the	manager	to	purchase	new	terminals
and	add	them	to	the	system.We	will	now	attempt	to	analyze	this	apparent	contradiction	using	basic	queueing	the-ory.	Assume	that	the	computer	and	its	users	are	adequately	represented	by	an	M/M/lqueueing	system.	Since	there	are	10	users	per	eight	hours	on	average,	we	set	X	=10/8	users/hour	=	0.0208	users/min.	The	system	is	busy	an	average	of
five	out	ofeight	hours;	hence	the	utilization	p	=	5/8,	implying	that	u	=	1/30	=	0.0333.	Substitut-ing	these	values	for	X	and	u	into	(2.25)	yields	fw	=	50	mm,	which	confirms	theusers'	estimate	of	their	average	waiting	time	for	terminal	access.	The	manager	is	now	convinced	that	the	company	needs	additional	terminals	andagrees	to	buy	enough	to	reduce
rw	from	50	to	10	min.	The	question	then	arises:	Howmany	new	terminals	should	he	buy?	We	can	approach	this	problem	by	representing	126	each	terminal	and	its	users	by	an	independent	M/M/l	queueing	system.	Let	m	be	the	minimum	number	of	terminals	needed	to	make	tw	<	10	or,	equivalents,	tn	<	40.	TheSECTION	2	4	arriving	users	are	assumed
to	divide	evenly	into	m	queues,	one	for	each	terminal.	The	arrival	rate	X*	per	terminal	is	taken	to	be	X/m	=	0.0208/m	users/min.	If,	as	indicatedabove,	the	computer's	CPU	is	lightly	utilized,	then	a	few	additional	terminals	shouldnot	affect	the	response	time	experienced	at	a	terminal*,	hence	we	assume	that	each	ter-minal's	mean	service	rate	is	u*	=	p.
=	0.0333	users/min.	To	meet	the	desired	perfor-mance	goal,	we	require	t*Q	=	l/(u*	-	X*)	=	i/(n	-	X/m)	<	40	from	which	it	follows	that	m	>	2.5.	Hence	three	terminals	are	needed,	so	two	new	ter-minals	should	be	acquired.	This	result	is	pessimistic,	since	the	users	are	unlikely	toform	three	separate	queues	for	three	terminals	or	to	maintain	the
independence	of	thequeues	by	not	jumping	from	one	queue	to	another	whose	terminal	has	become	avail-able.	Nevertheless,	this	simple	analysis	gives	the	useful	result	that	m	should	be	2	or	3.	2.4SUMMARY	The	central	problem	facing	the	digital	system	designer	is	to	a	devise	a	structure	(acircuit,	network,	or	system)	from	given	components	that
exhibits	a	specifiedbehavior	or	performs	a	specified	range	of	operations	at	minimum	cost.	Variousmethods	exist	for	describing	structure	and	behavior,	including	block	diagrams	(forstructure),	truth	and	state	tables	(for	behavior),	and	HDLs	(for	behavior	and	struc-ture).	Computer	systems	can	be	viewed	at	several	levels	of	abstraction,	where	eachlevel
is	determined	by	its	primitive	components	and	information	units.	Three	levelshave	been	presented	here:	the	gate,	register,	and	processor	levels,	whose	compo-nents	process	bits,	words,	and	blocks	of	words,	respectively.	Design	at	all	levels	isa	complex	process	and	depends	heavily	on	CAD	tools.	The	gate	level	employs	logic	gates	as	components	and
has	a	well-developedtheory	based	on	Boolean	algebra.	A	combinational	circuit	implements	logic	orBoolean	functions	of	the	form	z{xx,	x2,	...,	xn),	where	z	and	the	x,'s	assume	the	val-ues	0	and	1.	The	circuit	can	be	constructed	from	any	functionally	complete	set	ofgate	types	such	as	{AND,	OR,	NOT}	or	{NAND}.	Every	logic	function	can	berealized	by	a
two-level	circuit	that	can	be	obtained	using	exact	or	heuristic	minimi-zation	techniques.	Sequential	circuits	implement	logic	functions	that	depend	ontime;	unlike	combinational	circuits,	sequential	circuits	have	memory.	They	arebuilt	from	gates	and	1-bit	storage	elements	(flip-flops)	that	store	the	circuit's	stateand	are	synchronized	by	means	of	clock
signals.	Register-level	components	include	combinational	devices	such	as	word	gates,multiplexers,	decoders,	and	adders,	as	well	as	sequential	devices	such	as	(parallel)registers,	shift	registers,	and	counters.	Various	general-purpose	programmable	ele-ments	also	exist,	including	PLAs,	ROMs,	and	FPGAs.	Little	formal	theory	existsfor	the	design	and
analysis	of	register-level	circuits.	They	are	often	described	byHDLs	whose	fundamental	construct	is	the	register-transfer	statement	cond:	Z	:=	F,(X1,X2,...,Xit);	denoting	the	conditional	transfer	of	data	from	registers	Xl,X2,...,Xk	to	register	Z	viaa	combinational	processing	circuit	F{.	Register-level	circuits	often	consist	of	adatapath	unit	and	a	control
unit.	The	first	step	in	register-level	design	is	to	con-struct	a	formal	(HDL)	description	of	the	desired	behavior	from	which	the	compo-nents	and	connections	for	the	datapath	unit	can	be	determined.	The	logic	signalsneeded	to	control	the	datapath	are	then	identified.	Finally,	a	control	unit	is	designedthat	generates	these	control	signals.	The	components
recognized	at	the	processor	level	are	CPUs	and	other	proces-sors,	memories,	10	devices,	and	interconnection	networks.	The	behavior	of	proces-sor-level	systems	is	complex	and	is	often	specified	in	approximate	terms	usingaverage	or	worst-case	behavior.	Processor-level	design	is	heavily	based	on	the	useof	prototype	structures.	A	prototype	design	is
selected	and	modified	to	meet	thegiven	performance	specifications.	The	actual	performance	of	the	system	is	thenevaluated,	and	the	design	is	further	modified	until	a	satisfactory	result	is	achieved.Typical	performance	measures	are	millions	of	instructions	executed	per	second(MIPS)	and	clock	cycles	per	instruction	(CPI).	A	few	analytical	methods	for
perfor-mance	evaluation	exist—notably	queueing	theory—but	their	usefulness	is	limited.Instead,	experimental	approaches	using	computer-based	simulation	or	performancemeasurements	on	an	actual	system	are	used	extensively.	127	CHAPTER	2	Design	Methodology	2.5PROBLEMS	2.1.	Explain	the	difference	between	structure	and	behavior	in	the

digital	system	context.	Il-lustrate	your	answer	by	giving	(a)	a	purely	structural	description	and	(b)	a	purely	be-havioral	description	of	a	half-subtracter	circuit	that	computes	the	1-bit	difference	d	=x	-	v	and	also	generates	a	borrow	signal	b	whenever	x	<	y.	2.2.	(a)	Following	the	example	of	Figure	2.4,	construct	a	behavioral	VHDL	description	ofthe	full-
adder	circuit	of	Figure	2.9b.	(b)	Following	Figure	2.5,	construct	a	structuralVHDL	description	of	the	full	adder.	2.3.	Construct	both	structural	and	behavioral	descriptions	in	VHDL	of	the	EXCLUSIVE-OR	circuit	appearing	in	Figure	2.2.	2.4.	Figure	2.54	describes	a	half	adder	in	the	widely	used	Verilog	HDL.	The	Verilog	sym-bols	for	the	logic	operations
AND,	OR,	EXCLUSIVE-OR,	and	NOT	are	&,	I.	\	and	~.respectively,	(a)	Is	this	description	behavioral	or	structural?	(b)	Construct	a	similar	de-scription	in	Verilog	for	a	full	adder.	module	half	judder	(xQ,	v0,	s0,	co)'Input	x0.	yy;	output	s0,	c0;	assign	s0	=	x0	A	y0;	assign	c0	=	x0	&	y0;endmodule	Figure	2.54	Verilog	description	of	a	half	adder.	128	Inputs
Outnuts	SECTION	2.5	*i	y{	Kl	4	bi	Problems	0	0	0	00	0	0	1	11	0	1	0	11	0	1	1	01	1	0	0	10	1	0	1	00	11	11	0	00	1	11	Figure	2.55	Truth	table	of	a	full	subtracter.	2.5.	Assign	each	of	the	following	components	to	one	of	the	three	major	design	levels—pro-cessor,	register,	or	gate—and	justify	your	answers,	(a)	A	multiplier	of	two	n-bit	num-bers	jV,	and	N2.	(b)
An	identity	circuit	that	outputs	a	1	if	all	its	n	inputs	(which	representa	number	AO	are	the	same;	it	outputs	a	0	otherwise,	(c)	A	negation	circuit	that	convertsN	to	-N.	(d)	A	first-in	first-out	(FIFO)	memory,	that	stores	a	sequence	of	numbers	inthe	order	received;	it	also	outputs	the	numbers	in	the	same	order.	2.6.	Certain	very	small-scale	ICs	contain	a
single	two-input	gate.	The	ICs	are	manufacturedin	three	varieties—NAND,	OR,	and	EXCLUSIVE-OR—as	indicated	by	a	printed	labelon	the	ICs	package.	By	mistake,	a	batch	of	all	three	varieties	is	manufactured	withouttheir	labels,	(a)	Devise	an	efficient	test	that	a	technician	can	apply	to	any	IC	from	thisbatch	to	determine	which	gate	type	it	contains,
(b)	Suppose	the	batch	of	unlabeled	ICscontains	NOR	gates,	as	well	as	NAND,	OR,	and	EXCLUSIVE-OR.	Devise	an	efficienttesting	procedure	to	determine	each	ICs	gate	type.	2.7.	Construct	a	logic	circuit	implementing	the	1-bit	(full)	subtracter	defined	in	Figure	2.55using	as	few	gates	as	you	can.	2.8.	{a)	Obtain	an	efficient	all-NAND	realization	for	the
following	four-variable	Booleanfunction:	fx(a,b,c,d)	=	a(b	+	c)d	+	a(b	+	d)(b	+	c)(c	+	d)+	b	c	d	(b)	Construct	an	efficient	all-NOR	design	ioxfx{a,b,c,d).	2.9.	Design	a	two-level	combinational	circuit	in	the	sum-of-products	style	that	computesthe	3-bit	sum	of	two	2-bit	binary	numbers.	The	circuit	is	to	be	implemented	using	ANDand	OR	gates.	2.10.
Consider	the	D	flip-flop	of	Figure	2.11.	(a)	Explain	why	the	glitch	does	not	affectthe	flip-flop's	state	y.	(b)	This	flip-flop	is	said	to	be	positive	edge-triggered	becauseit	triggers	on	the	positive	(rising	or	0	to	1)	edge	of	the	clock	CK.	A	negative	edge-triggered	flip-flop	triggers	on	the	negative	(falling	or	1	to	0)	edge	of	CK,	which	isindicated	by	placing	an
inversion	bubble	at	the	CK	input	like	that	at	the	y	output.Redraw	the	y	part	of	Figure	2.11	for	a	negative	edge-triggered	flip-flop.	2.11.	Figure	2.56	defines	a	1-bit	storage	device	called	a	JK	flip-flop.	It	has	the	same	edge-triggered	clocking	as	the	D	flip-flop	of	Figure	2.11	but	has	two	data	inputs	insteadof	one.	The	J	input	is	activated	to	store	a	1	in	the
flip-flop;	that	is,	JK	=	10	sets	y	=	SetClock	-Reset	—	J	yCKK	Inputs	JK00	01	10	11	State	0>'(')	1	0	0	11	Next	state	ioio	y('	+	D	129	CHAPTER	2	Design	Methodology	(a)	Figure	2.56	JK	flip-flop:	(a)	graphic	symbol;	(b)	state	table.	(b)	1.	Similarly,	the	K	input	is	activated	to	store	a	0	in	the	flip-flop;	that	is,	JK	=	01	re-sets	>•	to	0.	The	input	combination	JK	=
00	leaves	the	state	unchanged,	while	JK	=11	always	changes,	or	toggles,	the	state,	(a)	What	is	the	characteristic	equation	for	aJK	flip-flop,	analogous	to	(2.5)?	(b)	Show	how	to	build	a	JK	flip-flop	from	a	D	flip-flop	and	a	few	NAND	gates.	2.12.	Derive	a	state	table	for	a	synchronous	sequential	circuit	that	acts	as	a	serial	incre-menter.	An	unsigned
number	N	of	arbitrary	length	is	entered	serially	on	input	line	x,causing	the	circuit	to	output	serially	the	number	N	+	\	on	its	output	line	z.	Give	theintuitive	meaning	of	each	state	and	identify	the	reset	state.	2.13.	An	alternative	to	a	state	table	for	representing	the	behavior	of	a	sequential	circuitSC	is	a	state	diagram	or	state	transition	graph,	whose
nodes	denote	states{S^Sj,...^}	and	whose	edges,	which	are	indicated	by	arrows,	denote	transitionsbetween	states.	A	transition	arrow	from	5,	to	&	is	labeled	XJZV	if,	when	SC	is	instate	5,	and	input	Xu	is	applied,	the	(present)	output	Zv	is	produced	and	SC's	nextstate	is	Sj.	(a)	Construct	a	state	table	equivalent	to	the	state	diagram	for	SC	appear-ing	in
Figure	2.57.	(b)	How	many	flip-flops	are	needed	to	implement	5C?	2.14.	Design	the	sequential	circuit	SC	whose	behavior	is	defined	in	Figure	2.57	using	Dflip-flops	and	NAND	gates.	SC	has	a	single	primary	input	line	and	a	single	primaryoutput	line.	Your	answer	should	include	a	complete	logic	diagram	for	SC.	Use	asfew	gates	and	flip-flops	as	you	can
in	your	design.	2.15.	2.16,	Implement	the	sequential	circuit	SC	specified	in	the	preceding	problem,	this	timeusing	JK	flip-flops	(see	problem	2.11)	and	NOR	gates.	Derive	a	logic	diagram	forSC	and	use	as	few	gates	and	flip-flops	as	you	can.	Design	a	serial	subtracter	analogous	to	the	serial	adder.	The	subtracter's	inputs	aretwo	unsigned	binary	numbers
nx	and	n2;	the	output	is	the	difference	n,	-	n2.	Construct	Reset	Figure	2.57	State	diagram	for	a	sequential	circuit	SC.	130	a	state	table,	an	excitation	table,	and	a	logic	circuit	that	uses	JK	flip-flops	and	NOR	gates	only.	SECTION	2.5	problems	2.YI.	Design	a	sequential	circuit	that	multiplies	an	unsigned	binary	number	N	of	arbitrary	length	by	3.	N	is
entered	serially	via	input	line	x	with	its	least	significant	bit	first.The	result	representing	3/V	emerges	serially	from	the	circuit's	output	line	z.	Con-struct	a	state	table	for	your	circuit	and	give	a	complete	logic	circuit	that	uses	D	flip-flops	and	NAND	gates	only.	2.18.	An	important	property	of	gates	is	functional	completeness,	which	ensures	that
acomplete	gate	set	is	adequate	for	all	types	of	digital	computation,	(a)	It	has	been	asserted	that	functional	completeness	is	irrelevant	at	the	register	level	when	dealingwith	components	such	as	multiplexers,	decoders,	and	PLDs.	Explain	concisely	whythis	is	so.	(b)	Suggest	a	logical	property	of	sets	of	such	components	that	might	besubstituted	for
completeness	as	an	indication	of	the	components'	general	usefulnessin	digital	design.	Give	a	brief	argument	supporting	your	position.	2.19.	Redraw	the	gate-level	multiplexer	circuit	of	Figure	2.20	at	the	register	level	usingword	gates.	Use	as	few	such	gates	as	you	can	and	mark	all	bus	sizes.	Observe	that	asignal	such	as	e	that	fans	out	to	m	lines	can
be	considered	to	create	an	m-bit	bus	car-rying	the	w-bit	word£	=	(e,e,...,e).	2.20.	Figure	2.55	gives	the	truth	table	for	a	full	subtracter,	which	computes	the	differenceXj	-	>',	-	bi_i,	where	bt_x	denotes	the	borrow-in	bit.	The	subtracter's	outputs	are	bt,d{,	where	b{	denotes	the	borrow-out	bit.	Show	how	to	use	(a)	an	eight-input	multi-plexer	and	(b)	a
four-input	multiplexer	to	realize	the	full	subtracter.	2.21.	Show	how	to	design	a	1/16	decoder	using	the	1/4	decoder	of	Figure	2.236	as	yoursole	building	block.	2.22.	Describe	how	to	implement	the	priority	encoder	of	Figure	2.25	by	(a)	a	two-levelAND-OR	circuit	and	(b)	a	multiplexer	of	suitable	size.	Demonstrate	that	one	designis	much	less	costly	than
the	other	and	derive	a	logic	diagram	for	the	less	expensivedesign.	2.23.	Design	a	16-bit	priority	encoder	using	two	copies	of	an	8-bit	priority	encoder.	Youmay	use	a	few	additional	gates	of	any	standard	types	in	your	design,	if	needed.	2.24.	A	magnitude-comparator	circuit	compares	two	unsigned	numbers	X	and	Y	and	pro-duces	three	outputs	z,,	z2,	and
z3,	which	indicate	X=	Y,X>Y,	and	X	<	Y,	respectively.(a)	Show	how	to	implement	a	magnitude	comparator	for	2-bit	numbers	using	a	single16-input,	3-bit	multiplexer	of	appropriate	size,	(b)	Show	how	to	implement	the	samecomparator	using	an	eight-input,	2-bit	multiplexer	and	a	few	(not	more	than	five)two-input	NOR	gates.	2.25.	Commercial
magnitude	comparators	such	as	the	74X85	have	three	control	inputsconfusingly	labeled	X	=	Y,	X	>	Y.	and	X	<	Y,	like	the	comparator's	output	lines.These	inputs	permit	an	array	of	k	copies	of	a	4-bit	magnitude	comparator	to	be	ex-panded	to	form	a	Ak-hil	magnitude	comparator	as	shown	in	Figure	2.58.	Modify	the4-bit	magnitude	comparator	of	Figure
2.27	to	add	the	three	new	control	inputs	andexplain	briefly	how	they	work.	[Hint:	The	unused	carry	input	lines	denoted	cin	inFigure	2.27	play	a	central	role	in	the	modification.]	2.26.	Show	how	to	connect	n	half	adders	(Figure	2.5)	to	form	an	«-bit	combinational	in-crementer	whose	function	is	to	add	one	(modulo	2")	to	an	«-bit	number	X.	For	example,
if	X	=	10100111.	the	incrementer	should	output	Z	=	10101000;	if	X	=11111111,	it	should	output	Z	=	00000000.	2.27.	Show	how	the	register	circuit	of	Figure	2.29	can	be	simplified	by	using	theLOAD	line	to	enable	and	disable	the	register's	clock	signal	CLOCK.	Explain	clear2.28.	2.29.	ly	why	this	gated-clocking	technique	is	often	considered	a	violation
of	good	de-sign	practice.	A	useful	operation	related	to	shifting	is	called	rotation.	Left	rotation	of	an	ra-bitregister	is	defined	by	the	register-transfer	statement	131	(Zm-2>Zn	(2.26)	•'^0'Zm-l)	:_	(Zm-l»Zin_2v.>Zi.Zo)	(a)	Give	an	assignment	statement	similar	to	(2.26)	that	defines	right	rotation.	Showhow	the	4-bit	right-shift	register	SR	of	Figure	2.30
can	easily	be	made	to	implementright	rotation,	(b)	Using	as	few	additional	components	and	control	lines	as	possible,show	how	to	extend	SR	to	implement	both	right	shifting	and	right	rotation.	Design	an	8-bit	counter	using	only	the	following	component	types:	4-bit	D-type	reg-isters,	half	adders,	full	adders,	and	two-input	NAND	gates.	The	counter's
inputs	area	CLEAR	signal	that	resets	it	to	the	all-0	state	and	a	COUNT	signal	whose	0-to-l(positive)	edge	causes	the	current	count	to	be	incremented	by	one.	Use	as	few	com-ponents	as	you	can,	assuming	for	simplicity	that	each	component	type	has	the	samecost.	2.30.	Assuming	that	input	variables	are	available	in	true	form	only,	show	how	to	makethe
Actel	FPGA	cell	of	Figure	2.35a	realize	two-input	versions	of	the	NAND,	NOR,and	EXLCLUSIVE-OR	functions.	2.31.	(a)	Assuming	that	input	variables	are	available	in	true	form	only,	what	is	the	fan-inof	the	largest	NAND	gate	that	can	be	implemented	with	a	single	Actel	FPGA	cell(Figure	2.35a)?	(b)	What	is	the	largest	NAND	if	both	true	and
complemented	inputsare	available	and	we	allow	some	or	all	of	the	inputs	to	the	NAND	to	be	inverted?	2.32.	Show	how	to	implement	the	full	subtracter	defined	in	Figure	2.55	using	as	few	cop-ies	as	you	can	of	the	Actel	C-module.	Again	assume	that	the	input	variables	are	sup-plied	in	true	form	only.	2.33.	Figure	2.59	shows	the	Actel	FPGA	S-module,
which	adds	a	D	flip-flop	to	the	out-put	of	the	C-module	discussed	in	the	text.	Show	how	to	use	one	copy	of	this	cell	toimplement	the	edge-triggered	JK	flip-flop	defined	in	problem	2.11,	assuming	onlythe	true	output	y	is	needed	and	that	either	one	of	the	flip-flop's	J	or	K	inputs	can	becomplemented.	CHAPTER	2	Design	Methodology	Figure	2.58
Expansion	of	a	4-bit	magnitude	comparator	to	form	a	16-bit	comparator.	4	*3	X4	Y,	4	*7	Yi	4	Y*-	X\2	4	*15	Yn	r,5	>	\	Y	4-bitmagnitudecomparator	Y	4-bitmagnitudecomparator	X	Y	4-bitmagnitudecomparator	Y	4-bitmagnitudecomparator	X	X>Y	X>Y	X	X	X>Y	X>YX=Y	X=YXYX=Y	X=YXYX=Y	X=YX	0	andCMPA	sets	the	zero	flag	Z	to	0,	indicating	a
nonzero	result.	(It	also	sets	various	otherflags	not	used	by	this	program).	When	A0	finally	reaches	1001,	A0	-	1001	=	0,	soCMPA	sets	Z	to	1.	Now	the	last	instruction	BNE,	which	stands	for	branch	if	not	equalto	zero,	is	a	conditional	branch	instruction	whose	operation	is	described	by	ifZ*l	then	PC:	=	START	It	therefore	transfers	execution	back	to	the
ABCD	instruction	in	location	START	aslong	as	A0	>	1001.	When	A0	finally	reaches	1001,	Z	becomes	1,	and	PC	is	incrementednormally	to	exit	from	the	program.	It	is	interesting	to	compare	this	680X0	program	with	the	similar	programs	givenearlier	for	the	IAS	(Figure	1.15)	and	PowerPC	(Figure	1.27)	computers.	Coprocessors.	The	built-in	instruction
repertoire	of	the	68020	includes	fixed-point	multiplication	and	division	and	stack-based	instructions	for	transferring	con-trol	between	programs.	Hardware-implemented	floating-point	instructions	are	notavailable	directly;	however,	they	are	provided	indirectly	by	means	of	an	auxiliaryIC,	the	68881	floating-point	coprocessor.	(The	ARM6	also	has
provisions	forexternal	coprocessors.)	In	general,	a	coprocessor	P	is	a	specialized	instruction	exe-cution	unit	that	can	be	coupled	to	a	microprocessor	so	that	instructions	to	be	exe-cuted	by	P	can	be	included	in	programs	fetched	by	the	microprocessor.	Thus	thecoprocessor	serves	as	an	extension	to	the	microprocessor	and	forms	part	of	theCPU	as
indicated	in	Figure	3.14.	The	68881	(and	the	similar	but	faster	68882)	contains	a	set	of	eight	80-bitregisters	for	storing	floating-point	numbers	of	various	formats,	including	32-	and64-bit	numbers	conforming	to	the	standard	IEEE	754	format	(presented	later).Additional	control	registers	in	the	68881	allow	it	to	communicate	with	the68020.	A	set	of
coprocessor	instructions	are	defined	for	the	68020;	they	containcommand	fields	specifying	floating-point	operations	that	the	68881	can	execute.When	the	68020	fetches	and	decodes	such	an	instruction,	it	transfers	the	com-mand	portion	to	the	coprocessor,	which	then	executes	it.	Further	exchanges	takeplace	between	the	main	processor	and	the
coprocessor	until	the	coprocessor	com-pletes	execution	of	its	current	operation,	at	which	point	the	68020	proceeds	toits	next	instruction.	The	commands	executed	by	the	68881	include	the	basic	159	CHAPTER	3Processor	Basics	CPU	68020micro-processor	Systembus	floating-pointcoprocessor	TTT	32-bit	address	bus	Main	memory	Read-
onlymemory(ROM)	Input-output	interface	circuit	(IO	port)	32-bit	data	bus	Control	lines	Input-output	interface	circuit	(IOport)	Read-writememory(RAM)	"J-!	IO	device	Figure	3.14	68020-based	microcomputer	with	floating-point	coprocessor.	IO	device	160	arithmetic	operations	(add.	subtract,	multiply,	and	divide),	square	root,	logarithms,	and
trigonometric	functions.	Other	types	of	coprocessors	may	be	Data	Representation	attached	to	the	68020	in	similar	fashion.	Later	members	of	the	680X0	familytake	advantage	of	advances	in	VLSI	to	integrate	a	floating-point	(co)processorinto	the	CPU	chip.	Other	design	features.	Like	the	IBM	System/360-370	and	the	ARM6,	the	CPUhas	a	supervisor
state	intended	for	operating	system	use	and	a	user	state	for	appli-cation	programs.	As	Figures	3.11	and	3.12	indicate,	certain	"privileged"	controlregisters	and	instructions	can	be	used	only	in	the	supervisor	state.	User	and	super-visory	programs	are	thus	clearly	separated—for	example,	they	employ	differentstack	pointers—thereby	improving	system
security.	680X0-based	computers	arealso	designed	to	allow	easy	implementation	of	virtual	memory,	whereby	the	oper-ating	system	makes	the	main	memory	appear	larger	to	user	programs	than	it	reallyis.	Hardware	support	for	virtual	memory	is	provided	by	the	68851	memory	man-agement	unit	(MMU),	another	680X0	coprocessor.	Provided	they
meet	certain	independence	conditions,	up	to	three	68020	instruc-tions	can	be	processed	simultaneously	in	pipeline	fashion.	This	pipelining	is	com-plicated	by	the	fact	that	instruction	lengths	and	execution	times	vary,	a	problem	thatRISCs	try	to	eliminate.	Another	speedup	feature	found	in	the	68020	is	a	smallinstruction-only	cache	(I-cache).	The	68020
prefetches	instructions	from	mainmemory	while	the	system	bus	is	idle;	the	instructions	can	subsequently	be	readmuch	more	quickly	from	the	on-chip	cache	than	from	the	off-chip	main	memory.An	unusual	feature	of	the	68020	noted	in	Figure	3.11	is	its	use	of	two	levels	ofmicroprogramming	to	implement	the	CPU's	control	logic.	For	the
manufacturer,this	feature	increases	design	flexibility	while	reducing	IC	area	compared	with	con-ventional	(one-level)	microprogrammed	control.	3.2	DATA	REPRESENTATION	The	basic	items	of	information	handled	by	a	computer	are	instructions	and	data.We	now	examine	the	methods	used	to	represent	such	information,	focusing	on	theformats	for
numerical	data.	3.2.1	Basic	Formats	Figure	3.15	shows	the	fundamental	division	of	information	into	instructions	(oper-ation	or	control	words)	and	data	(operands).	Data	can	be	further	subdivided	intonumerical	and	nonnumerical.	In	view	of	the	importance	of	numerical	computation,computer	designs	have	paid	a	great	deal	of	attention	to	the
representation	of	numbers.	Two	main	number	formats	have	evolved:	fixed-point	and	floating-point.	Thebinary	fixed-point	format	takes	the	form	bAb^)c..	.bK,	where	each	bx	is	0	or	1	and	abinary	point	is	present	in	some	fixed	but	implicit	position.	A	floating-point	num-ber,	on	the	other	hand,	consists	of	a	pair	of	fixed-point	numbers	M,E,	whichdenote
the	number	M	x	BE,	where	B	is	a	predetermined	base.	The	many	formatsused	to	encode	fixed-point	and	floating-point	numbers	will	be	examined	later	in	Binary	161	Instructions	^	Fixed-point	CHAPTER	3	Information	Bm,2>Bm,l>Bm,0	(3-8)	Suppose	we	store	these	4(m	+	1)	bytes	in	M	using	the	"natural"	order	defined	by(3.8);	that	is,	we	assign	a
sequence	of	increasing	memory	addresses	adr0,	adrx,	adr2,	adr3,	...,	adr4m+2,	adr4m+3	to	the	bytes	as	listed	in	(3.8).	This	storage	sequence,	which	is	illustrated	in	Figure3.18a,	is	a	byte-storage	convention	called	big-endian.2	It	is	so	named	because	themost	significant	(biggest)	byte	Bj3	of	word	Wt	is	assigned	the	lowest	address	and	theleast
significant	byte	BiQ	is	assigned	the	highest	address.	In	other	words,	the	big-endian	scheme	assigns	the	highest	address	to	byte	0.	The	alternative	byte-storagescheme	called	little-endian	assigns	the	lowest	address	to	byte	0.	This	corresponds	to	^0,^,...,!^	=	#o.O'fiO,l'fiO,2'fiO,3'5l,0'5l,l'fl1.2'#1.3	BmfrBm,\iBm2'Bm3	and	is	illustrated	by	Figure	3.18&.
Interestingly,	computer	manufacturers	have	never	agreed	on	this	issue,	so	boththe	big-endian	and	little-endian	conventions	are	in	widespread	use.	For	example,the	Motorola	680X0	uses	the	big-endian	method,	whereas	the	Intel	80X86	series	islittle-endian.	Some	computers	including	the	ARM	family	can	switch	between	thetwo	endian	conventions.
Tags.	In	the	von	Neumann	computer,	instruction	and	data	words	are	storedtogether	in	main	memory	and	are	indistinguishable	from	one	another—this	is	theclassic	"stored	program"	concept.	An	item	plucked	at	random	from	memory	cannotbe	identified	as	an	instruction	or	data.	Different	data	types	such	as	fixed-point	andfloating-point	numbers	also
cannot	be	distinguished	by	inspection.	A	word's	typeis	determined	by	the	way	a	processor	interprets	it.	In	principle,	the	same	word	canbe	treated	as	an	instruction	and	data	at	different	times,	for	example,	the	word	X	in	2The	allusion	is	to	an	argument	appearing	in	Gulliver's	Travels	on	whether	an	egg	should	be	opened	at	it>	bigor	little	end	[Cohen
1981].	164	SECTION	3.2Data	Representation	...ooc	Byte	3.3	...00B	Byte	2,0	...OOA	Byte	2,1	...009	Byte	2,2	...008	Byte	2,3	...007	Byte	1,0	...006	Byte	1,1	...005	Byte	1,2	...004	Byte	1.3	...003	Byte	0,0	...002	Byte	0,1	...001	Byte	0.2	...000	Byte	0.3	Higheraddresses	Byteaddress	02	01	00	Loweraddresses	Wordaddress	.OOC	Byte	3,0	.OOB	£yte	2,3	OOA
Byte	2,2	.009	Byte	2.1	.008	Byte	2,0	.007	Byte	1.3	.006	Byte	1,2	.005	Byte	1,1	.004	Byte	1,0	.003	Byte	0,3	.002	Byte	0,2	.001	Byte	0,1	.000	Byte	0,0	Byte	address	Figure	3.18	Basic	byte	storage	methods:	(a)	big-endian	and	(b)	little-endian.	02	01	00	Wordaddress	the	instruction	sequence	X:=X	+	Y;	go	to	X;	It	is	the	programmer's	(and	compiler's)
responsibility	to	ensure	that	data	are	notinterpreted	as	instructions,	and	vice	versa.	A	reason	for	this	deliberate	indistinguishability	of	data	and	instructions	can	be	seen	in	the	design	of	the	IAS	computer(section	1.2.2).	The	LAS's	address-modify	instructions	alter	stored	instructions	inmain	memory.	The	ability	to	modify	instructions	in	this	way—in
effect,	treatingthem	as	data—is	useful	when	processing	indexed	variables,	as	illustrated	in	Exam-ple	1.4.	However,	this	type	of	instruction	modification	in	memory	became	obsoletewith	the	introduction	of	address-indexing	hardware.	A	few	computer	designers	have	argued	that	the	major	information	types	shouldbe	assigned	formats	that	identify	them
[Feustel	1973;	Myers	1982],	This	can	bedone	by	associating	with	each	information	word	a	group	of	bits,	called	a	tag,	thatidentifies	the	word's	type.	The	tag	may	be	considered	as	a	physical	implementationof	the	type	declaration	found	in	some	high-level	programming	languages.	One	ofthe	earliest	machines	to	use	tags	was	the	1960s-vintage	Burroughs
B6500/7500series,	which	employed	a	3-bit	tag	field	in	every	word	so	that	eight	word	typescould	be	distinguished.	The	52-bit	word	format	of	the	B6500/7500	and	the	inter-pretation	of	its	tag	appear	in	Figure	3.19.	Tagging	simplifies	instruction	specification.	In	conventional,	nontagged	com-puters,	an	instruction's	opcode	must	explicitly	or	implicitly
specify	the	type	of	dataon	which	it	operates.	The	PCU	must	know	the	operand	types	in	order	to	route	them	47	Parity-	Tagcheck	bit	VInformation	bits	Tag	Interpretation	000	Single-precision	number.	001	Indirect	reference	word.	010	Double-precision	number	on	Segment	descriptor.	100	Step-index	control	word.	101	Data	descriptor.	110	Uninitialized
operand.	111	Instruction.	Figure	3.19	Tagged-word	format	of	the	Burroughs	B6500/750O	series.	to	the	proper	arithmetic	circuits	and	registers.	It	is	therefore	necessary	to	providedistinct	instructions	for	each	data	type;	for	example,	add	binary	word,	add	binaryhalfword,	add	BCD	word,	add	floating-point	word,	and	add	floating-point	doubleword.	If,	on
the	other	hand,	tags	distinguish	the	operand	types,	then	a	single	ADDopcode	suffices	for	all	cases.	The	processor	merely	has	to	inspect	an	operand's	tagto	determine	its	type.	Furthermore,	tag	inspection	permits	the	hardware	to	checkfor	software	errors,	such	as	an	attempt	to	add	operands	whose	types	are	incompati-ble.	Tags	have	a	serious	cost
disadvantage,	however.	They	increase	memory	sizeand	add	to	the	system	hardware	costs	without	increasing	computing	performance.This	fact	has	severely	restricted	the	use	of	tagged	architectures.	Error	detection	and	correction.	Various	factors	like	manufacturing	defects	andenvironmental	effects	cause	errors	in	computation.	Such	errors	frequently
appearwhen	information	is	being	transmitted	between	two	relatively	distant	points	withina	computer	or	is	being	stored	in	a	memory	unit.	"Noise"	in	the	communication	linkcan	corrupt	a	bit	x	that	is	being	sent	from	A	to	B	so	that	B	receives	x	instead	of	x.To	guard	against	errors	of	this	type,	the	information	can	be	encoded	so	that	speciallogic	circuits
can	detect,	and	possibly	even	correct,	the	errors.	A	general	way	to	detect	or	correct	errors	is	to	append	special	check	bits	toevery	word.	One	popular	technique	employs	a	single	check	bit	c0	called	a	parity-bit.	The	parity	bit	is	appended	to	an	n-bit	word	X	=	(x0,	xu	.	..,	*„_,)	to	form	the(n	+	l)-bit	word	X*	=	(x0,	*,,	.	.	.	,	*„_,,%);	see	Figure	3.19.	Bit	c0	is
assigned	thevalue	0	or	1	that	makes	the	number	of	ones	in	X*	even,	in	the	case	of	even-paritycodes,	or	odd,	in	the	case	of	odd-parity	codes.	In	the	even-parity	case,	c0	isdefined	by	the	logic	equation	Cn	=	Xn	©	X,	©	...	©	X	n—1	(3.9)	where	©	denotes	EXCLUSIVE-OR,	while	in	the	odd-parity	case	Cr\	—	Xft	Suppose	that	the	information	X	is	to	be
transmitted	from	A	to	B.	The	value	of	c0	isgenerated	at	the	source	point	A	using,	say,	(3.9),	and	X*	is	sent	to	B.	Let	B	receivethe	word	X'	=	(x'Q,	x\,	.	.	.	,	xn_vc'Q).	B	then	determines	the	parity	of	the	receivedword	by	recomputing	the	parity	bit	according	to	(3.9)	thus:	165	CHAPTER	3Processor	Basics	C*n	=	x'n	©	X	,	©•*'„-!	166	SECTION	3.2Data
Representation	Error	source	(memory	unit.	Inpudata	comunication	link,	—*-	Output—»-	data(corrected	ifnecessary)	etc.)	Errorcorrector	r	,r	1	...I	•	•	a	i\	Check-bitgenerator	Errordetector	'	r	Check-bitgenerator	Figi	ire	3.20	Erro	r	detection	and	correction	logic.	The	received	parity	bit	c'0	and	the	reconstituted	parity	bit	c*0	are	then	compared.	Ifc'0	*
c*0,	the	received	information	contains	an	error.	In	particular,	if	exactly	1	bit	ofX*	has	been	inverted	during	the	transmission	process	(a	single-bit	error),	then	c'0	*c*0.	If	c'0	=	c*0,	it	can	be	concluded	that	no	single-bit	error	occurred,	but	the	possi-bility	of	multiple-bit	errors	is	not	ruled	out.	For	example,	if	a	0	changes	to	1	and	a	1changes	to	0	(a
double	error),	then	the	parity	of	X	is	the	same	as	that	of	X*	and	theerror	will	go	undetected.	The	parity	bit	c0	therefore	provides	single-errordetection.	It	does	not	detect	all	multiple	errors,	much	less	provide	any	informationabout	the	location	of	the	erroneous	bits.	The	parity-checking	concept	can	be	extended	to	the	detection	of	multipleerrors	or	to	the
location	of	single	or	multiple	errors.	These	goals	are	achieved	byproviding	additional	parity	bits,	each	of	which	checks	the	parity	of	some	subset	ofthe	bits	in	the	word	X*.	By	appropriately	overlapping	these	subsets,	the	correctnessof	every	bit	can	be	determined.	Suppose,	for	instance,	that	we	can	deduce	from	theparity	checks	the	identity	of	the	bit	x,
responsible	for	a	single-bit	error.	It	is	then	asimple	matter	to	introduce	logic	circuits	to	replace	xi	by	Jc,,	thus	providing	single-error	correction.	Let	c	be	the	number	of	check	bits	required	to	achieve	single-errorcorrection	with	n-b\t	data	words.	Clearly	the	check	bits	have	2C	patterns	that	mustdistinguish	between	n	+	c	possible	error	locations	and	the
single	error-free	case.Hence	c	must	satisfy	the	inequality	2C	>	n	+	c	+	1	(3.10)	For	n	=	16,	(3.10)	implies	that	c	>	5,	while	for	n	=	32	we	have	c	>	6.	A	variety	ofpractical	single-error-correcting	parity-check	codes	meet	the	lower	bound	on	cimplied	by	(3.10)	[Siewiorek	and	Swarz	1992].	Some	of	these	codes	can	also	detectdouble	errors	and	so	are
called	single-error-correcting	double-error-detecting(SECDED)	codes.	As	the	main	memories	of	computers	have	increased	in	storagecapacity	and	decreased	in	physical	size,	they	have	become	more	prone	to	transientfailures	that	are	often	correctable	via	SECDED	codes.	Figure	3.20	shows	the	struc-ture	of	a	typical	error	detection	and	correction
scheme	used	with	a	computer's	mainmemory.	3.2.2	Fixed-Point	Numbers	167	In	selecting	a	number	representation	to	be	used	in	a	computer,	the	following	factorsshould	be	taken	into	account:	•	The	number	types	to	be	represented;	for	example,	integers	or	real	numbers.	•	The	range	of	values	(number	magnitudes)	likely	to	be	encountered.	•	The
precision	of	the	numbers,	which	refers	to	the	maximum	accuracy	of	the	repre-sentation.	•	The	cost	of	the	hardware	required	to	store	and	process	the	numbers.	The	two	principal	number	formats	are	fixed-point	and	floating-point.	Fixed-pointformats	allow	a	limited	range	of	values	and	have	relatively	simple	hardwarerequirements.	Floating-point
numbers,	on	the	other	hand,	allow	a	much	larger	rangeof	values	but	require	either	costly	processing	hardware	or	lengthy	software	imple-mentations.	Binary	numbers.	The	fixed-point	format	is	derived	directly	from	the	ordinary(decimal)	representation	of	a	number	as	a	sequence	of	digits	separated	by	a	decimalpoint.	The	digits	to	the	left	of	the	decimal
point	represent	an	integer;	the	digits	tothe	right	represent	a	fraction.	This	is	positional	notation	in	which	each	digit	has	afixed	weight	according	to	its	position	relative	to	the	decimal	point.	If	i	>	1,	the	/thdigit	to	the	left	(right)	of	the	decimal	point	has	weight	10,_I	(10"')-	Thus	the	five-digit	decimal	number	192.73	is	equivalent	to	1	x	102	+	9	x	101	+	2	x
10°	+	7	x	10"1	+	3	x	1(T2	More	generally,	we	can	assign	weights	of	the	form	r\	where	r	is	the	base	or	radixof	the	number	system,	to	each	digit.	The	most	fundamental	number	representation	used	in	computers	employs	abase-two	positional	notation.	A	binary	word	of	the	form	bN...b-ib2bxbQ.	b_xb_2b_ib^...bM	(3.11)	represents	the	number	2V	When
unclear	from	the	context,	the	base	r	being	used	will	be	indicated	by	append-ing	r	as	a	subscript	to	the	number.	Thus	10102	denotes	the	binary	equivalent	of	thedecimal	number	1010,	whereas	102	denotes	210.	The	format	of	(3.11)	is	an	exampleof	a	fixed-point	binary	number	and	is	used	to	denote	unsigned	numbers.	Severaldistinct	methods	used	for
representing	signed	(positive	and	negative)	numbers	arediscussed	below.	Suppose	that	an	n-bit	word	is	to	contain	a	signed	binary	number.	One	bit	isreserved	to	represent	the	sign	of	the	number,	while	the	remaining	bits	indicate	itsmagnitude.	To	permit	uniform	processing	of	all	n	bits,	the	sign	is	placed	in	the	left-most	position,	and	0	and	1	are	used
to	denote	plus	and	minus,	respectively.	This	CHAPTER	3Processor	Basics	168	leads	to	the	format	SECTION	3.2	xn-\xn-2xn-2	■	■	■	*2*1*0	(3-12)	Data	Representation	|	*■	Y	'	Sign	Magnitude	<	The	precision	allowed	by	this	format	is	n	-	1	bits,	which	is	equivalent	to	(n	-	1)log	210	decimal	digits.	The	binary	point	is	not	explicitly	represented;	instead,	it
isimplicitly	assigned	to	some	fixed	location	in	the	word.	The	binary	point's	positionis	not	very	important	from	the	point	of	view	of	design.	In	many	situations	the	num-bers	being	processed	are	integers,	so	the	binary	point	is	assumed	to	lie	immediatelyto	the	right	of	the	least	significant	bit	jc0.	Monetary	quantities	are	often	expressed	asintegers;	for
instance,	S54.30	might	be	expressed	as	5430	cents.	Using	an	/i-bitinteger	format,	we	can	represent	all	integers	N	with	magnitude	\N\	in	the	range	0	mlZero	extension	alone	is	sometimes	used	for	this	purpose,	but	it	does	not	allow	them-bit	address	to	refer	to	all	2"	possible	addresses.	The	usual	solution	found	inCISCs	as	well	as	in	RISCs	is	to	treat	a
short	memory	address	as	a	modifier,	or	off-set,	which	is	added	(in	zero-extended	form)	to	a	full-length	memory	address	storedin	a	designated	CPU	register,	called	a	base	register.	The	RISC	1	uses	its	Rs	registerfor	this	purpose,	with	S2	serving	as	the	offset.	The	following	store-byte	instruction	STB	Rs,Rd(S2)	(3.24)	is	designed	to	copy	the	byte	from	the
right	end	of	register	Rs	to	the	memory	loca-tion	whose	address	is	Rd	+S2zero.extended.	In	practice,	sign	extension	is	often	implicitand	Rd	+S2zer0_extended	is	written	simply	as	Rd	+S2.	Hence	(3.24)	is	equivalent	to	M(Rd	+	S2):=Rs[24:31]	The	final	memory	address	Rd	+	S2	is	an	example	of	an	effective	address.	As	wewill	see	shortly	in	our
discussion	of	addressing	modes,	many	other	techniques	areemployed	for	constructing	effective	addresses.	EXAMPLE	3.5	INSTRUCTION	FORMATS	OF	THE	MIPS	RX000	SERIES	[Kane	and	heinrich	1992].	MIPS	Computer	Systems	(now	a	division	of	SiliconGraphics)	introduced	the	MIPS	RX0O0	series	of	microprocessors	in	1986.	The	firstmembers	of
the	series,	the	MIPS	R2000	and	R3000,	are	32-bit	machines	that	have	mostof	the	classic	RISC	features:	a	streamlined	instruction	set,	a	load/store	architecture,	andan	instruction	pipeline	to	support	a	performance	target	of	one	instruction	completedevery	clock	cycle.	Later	RX000	machines,	such	as	the	R10000	announced	in	1994.	addvarious
extensions	to	the	"MIPS	I"	architecture	implemented	in	the	R2000	and	R3000;we	will	confine	our	discussion	to	the	MIPS	I	case.	The	RX000	is	noteworthy	for	its	simple	and	regular	instruction	formats,	which	wenow	examine	in	detail.	As	seen	from	Figure	3.29,	all	the	RX000	instructions	are	oneword	(32	bits)	in	length	and	contain	a	6-bit	opcode	in	a
fixed	position.	The	remaining	31	J-typeformat	25	Opcodei	i	i	i	1	31	I-typeformat	Opcode	0	i	:	i	25	Rs	Rt	i	i	20	Immediate	operand	IMM	Branch	address	ADR	i	i	i	i	i	i	i	i	i	i	i	i	i	i	i	15	0	i	i	i	i	i	i	i	i	vRegister	addresses	(2)	183	CHAPTER	3	Processor	Basics	R-typeformat	25	20	10	Opcode	J	I	I	I	L	R^	Rt	Rd	Shift	amount_l	I	I	i_	FunctionJ	I	I	I	L	Register	addresses
(3)	Figure	3.29	Instruction	formats	of	the	MIPS	RX000.	26	bits	are	used	in	various	ways,	depending	on	the	instruction	type.	Any	operandsincluded	in	the	instruction	must	be	less	than	a	full	word	in	length,	so	some	way	isneeded	to	extend	them	to	a	full-size	memory	address	or	a	twos-complement	number.	In	the	case	of	a	J-type	(jump	or	branch)
instruction,	the	26	operand	bits	form	amemory	address	ADR,	which	is	the	target	or	branch	address.	For	example,	a	simpleunconditional	branch	instruction	has	the	J-type	format	J	ADR	(3.25)	meaning	go	to	ADR.	Since	RX000	memory	addresses	are	32	bits	long,	the	PCU	mustextend	the	26-bit	address	field	ADR	in	(3.25)	to	32	bits.	This	is	done
automatically	bythe	following	two-step	process:	Temp:=PC[31:28].ADR.OO;PC	:=	Temp;	First	the	four	high-order	bits	from	the	program	counter	PC	are	placed	in	front	ofADR	and	00	is	appended	to	it.	Then	the	resulting	32-bit	word	is	made	the	new	con-tents	of	PC.	The	above	address-extension	method	confines	the	possible	branch	addresses	to	a226-
word	region	of	memory	space	near	the	location	of	the	current	branch	instruction.However,	this	is	not	as	restrictive	as	it	might	appear.	First	of	all,	recall	that	a	32-bitmemory	address	refers	to	just	one	byte.	Only	230	instructions	can	be	placed	in	a	2	-bytememory,	so	only	30	bits	are	really	needed	to	locate	an	instruction.	The	RX000	and	sim-ilar
machines	always	assign	instructions	to	memory	word	locations	with	addresses	thatend	in	00:	that	is,	all	instructions	are	aligned	with	the	natural	word	boundaries	in	M.Moreover,	while	the	26-bit	address	field	ADR	is	still	4	bits	short	of	30.	the	size	of	theaccessible	region	for	branching	(226=	6.71	X	107	different	addresses)	is	more	than	ade-quate	for
most	programming	purposes—and	can	be	increased	by	software	means,	ifnecessary.	The	other	two	formats	shown	in	Figure	3.29	specify	register	addresses	usingeither	two	or	three	5-bit	fields.	The	RX000	has	25	=	32	general-purpose	registers	in	itsregister	file,	so	register	addresses	can	be	fully	specified	vuth	no	difficult).	The	second	Instruction	Sets
184	(I	type)	format	is	used	by	ALU-immediate	instructions	such	as	SECTION	3.3	ADDI	Rs,Rt,IMM	which	adds	the	contents	of	the	instruction's	immediate	address	field,	that	is,	bits	15:0of	the	instruction,	to	the	contents	of	register	Rs	and	places	the	result	in	register	Rt.	Toconvert	the	immediate	operand	FMM	from	16	to	32	bits,	it	is	sign-extended	to	32
bitsby	duplicating	its	left-most	bit	to	obtain	bits	31:16.	The	third	(R	type)	format	of	the	RX000	is	used	by	data-processing	instructionsthat	have	a	natural	three-address	format	to	define	operations	of	the	form	X}:=op(X2,X3).	For	instance,	the	add-register	instruction	ADD	Rd,Rs,Rt	performs	the	32-bit	addition	Rd	:=	Rs	+	Rt	using	the	contents	of	the
named	registers.	Since	the	register	addresses	occupy	only	15bits	of	the	instruction	format,	the	remaining	11	bits	are	used	in	various	ways	to	increase(and	complicate)	the	range	of	operations	that	can	be	performed.	In	effect,	they	serve	asextensions	to	the	opcode.	For	example,	there	are	six	shift-register	instructions,	all	ofwhich	use	instruction	bits
10:6	to	specify	the	amount	by	which	the	target	register's	con-tents	are	to	be	shifted.	The	shift-left	logical	instruction	SLL	Rd,Rt,Shamt	shifts	the	contents	of	register	Rt	left	by	Shamt	(shift	amount)	bits;	it	inserts	0s	in	thevacated	positions	on	the	right	and	places	the	result	in	Rd.	In	other	words,	Rt	:=	Rd[31-Shamt:0].0Shamt	where	0*	denotes	a	string
of	k	0s.	For	load	and	store	instructions,	the	RX000	uses	the	typical	RISC	technique	of	pro-viding	a	short	address	in	the	instruction,	which	serves	as	an	offset	to	a	fulllengthaddress	stored	in	a	CPU	register.	The	I-type	format	of	Figure	3.29	is	used	for	load	andstore	instructions.	In	this	case	Rs	serves	as	the	base	register,	and	Rt	serves	as	the	datasource
(for	store)	or	destination	(for	load).	The	instruction	that	loads	a	word	into	theCPU	has	the	assembly-language	format	LW	Rt,	IMM(Rs)	which	causes	the	16-bit	immediate	address	EMM,	that	is,	the	offset,	to	be	sign-extendedto	32	bits	and	added	to	the	contents	of	Rs	to	form	the	effective	address.	This	address	isthen	used	to	read	a	word	of	data	from	M
into	register	Rt.	In	HDL	terms	Rt	:=	M(Rs	+	MM)	Addressing	modes.	The	purpose	of	an	address	field	is	to	point	to	the	currentvalue	V(X)	of	some	operand	X	used	by	an	instruction.	This	value	can	be	specifiedin	various	ways,	which	are	termed	addressing	modes.	The	addressing	mode	of	Xaffects	the	following	issues:	•	The	speed	with	which	V(X)	can	be
accessed	by	the	CPU.	•	The	ease	with	which	V(X)	can	be	specified	and	altered.	Access	speed	is	influenced	by	the	physical	location	of	V(X)—normally	the	CPUor	the	external	memory	M.	Operand	values	located	in	CPU	registers,	such	as	the	general-register	file	and	the	program	counter	PC,	can	be	accessed	faster	thanoperands	in	M.	It	is	therefore	usual
to	favor	instructions	that	address	CPU	regis-ters,	both	in	the	design	of	instruction	sets	and	in	their	use	in	computer	programs.An	operand's	accessibility	is	also	affected	by	the	directness	of	its	addressingmode:	The	address	field	X	itself	can	be	V(X),	it	can	specify	directly	the	locationof	V(X),	or	it	can	identify	a	location	that	specifies	directly	the	location
of	V(X).We	can	thus	distinguish	the	number	of	levels	of	indirection	associated	with	anaddress.	The	advantage	of	indirection,	as	we	will	see,	is	increased	programmingflexibility.	We	can	achieve	further	flexibility	by	providing	addresses	that	areautomatically	altered	or	indexed,	for	example,	to	step	through	an	array	of	consec-utive	addresses.	If	the	value
V(X)	of	the	target	operand	is	contained	in	the	address	field	itself,then	X	is	called	an	immediate	operand	and	the	corresponding	addressing	mode	isimmediate	addressing.	By	implication	X	is	a	constant,	since	it	is	very	undesirableto	modify	instruction	fields	during	execution.4	More	often	than	not,	X	is	a	variablein	the	usual	mathematical	sense,	and	the
corresponding	address	field	identifies	thestorage	location	that	contains	the	required	value	V(X).	Thus	X	corresponds	to	avariable,	and	its	value	V(X)	can	be	varied	without	modifying	the	instructionaddress	field.	Operand	specification	of	this	type	is	called	direct	addressing.	The	addressing	modes	of	the	operands	appearing	in	a	machine-
languageinstruction,	which	can	vary	from	operand	to	operand,	are	defined	in	the	instruc-tion's	opcode.	Some	assembly	languages	allow	addressing	modes	to	be	similarlydefined	by	distinct	opcodes.	For	example,	the	assembly	language	of	the	Intel	8085series	has	the	opcode	MOV	(move)	to	specify	data	transfers	involving	directaddressing	only.
Therefore,	the	register-to-register	transfer	A	:=	B,	for	instance,	isspecified	by	MOV	A,B	(3.26)	The	A	and	B	operands	of	(3.26)	are	considered	to	be	directly	addressed,	since	thecontents	of	the	named	registers	are	the	desired	operand	values.	In	contrast,	to	spec-ify	the	operation	A	:=	99,	where	99	is	an	immediate	operand,	the	8085	instruction	MVI	A,
99	(3.27)	with	the	opcode	MVI	(wove	/mmediate)	must	be	used.	Note	that	(3.27)	uses	boththe	direct	and	immediate	addressing	modes.	Most	assembly	languages	take	a	different	approach	by	specifying	the	address-ing	modes	in	the	operand	fields.	For	example,	the	Motorola	680X0	equivalents	of(3.26)	and	(3.27),	with	Dl	=	A	and	D2	=	B	are	and	MOVE
D2,D1MOVE	#99.	Dl	(3.28)	respectively.	(Note	that	the	Motorola	operand	order	is	reversed	with	respect	to	theIntel	convention.)	In	(3.28)	the	prefix	#	indicates	that	the	immediate	addressingmode	is	to	be	used	for	the	operand	in	question.	Deleting	the	#	from	(3.28)	causes	4Self-modifying	programs	like	the	IAS	code	shown	in	Figure	1.15	(section
1.2.2)	reflect	the	madeqithe	addressing	modes	available	in	the	earliest	computers.	185	CHAPTER	3	Processor	Basics	186	SECTION	3.3Instruction	Sets	the	first	operand	to	refer	to	the	data	in	memory	location	99,	that	is,	M(99),	whichwould	be	an	instance	of	direct	memory	addressing.	It	is	sometimes	useful	to	change	the	location	(as	opposed	to	the
value)	of	Xwithout	changing	the	address	fields	of	any	instructions	that	refer	to	X.	This	may	beaccomplished	by	indirect	addressing,	whereby	the	instruction	contains	the	addressW	of	a	storage	location,	which	in	turn	contains	the	address	X	of	the	desired	operandvalue	V(X).	By	changing	the	contents	of	W,	the	address	of	the	operand	valuerequired	by	the
instruction	is	effectively	changed.	While	direct	addressing	requiresonly	one	fetch	operation	to	obtain	an	operand	value,	indirect	addressing	requirestwo.	Figure	3.30	illustrates	these	different	ways	of	specifying	operands	in	the	caseof	three	load	instructions	that	transfer	the	number	999	to	the	CPU	register	AC.	The	ability	to	use	all	addressing	modes	in
a	uniform	and	consistent	way	withall	opcodes	of	an	instruction	set	or	assembly	language	is	a	desirable	feature	termedorthogonality.	Orthogonal	instruction	sets	simplify	programming	both	by	reducingthe	number	of	distinct	opcodes	needed	and	by	simplifying	the	rules	for	operandaddress	specification.	Many	CISC	computers	like	the	680X0	have	little
orthogo-nality,	since	processor	costs	can	be	reduced	(at	the	expense	of	programming	costs)by	restricting	instructions	to	a	few	frequently	used	addressing	modes	that	varyfrom	instruction	to	instruction.	LOADI	999	AC	Memory	(a)	LOAD	X	AC	■•	999	Memory	(*)	LOADN	W	AC	999	Memory	(c)	Figure	3.30	Three	basic	addressing	modes:	(a)	immediate;
(b)	direct;	(c)	indirect.	Relative	addressing.	Absolute	addressing,	conceptually	the	simplest	mode	of	187direct	address	formation,	requires	the	complete	operand	address	to	appear	in	theinstruction	operand	field.	This	address	is	used	without	modification	(except,	per-haps,	zero	or	sign	extension	in	the	case	of	a	short	address	field)	to	access	the
desireddata	item.	Frequently,	only	partial	addressing	information	is	included	in	the	instruc-tion,	so	the	CPU	must	construct	the	complete	(absolute)	address.	One	of	the	com-monest	address	construction	techniques	is	relative	addressing,	in	which	theoperand	field	contains	a	relative	address,	also	called	an	offset	or	displacement	D.The	instruction	also
implicitly	or	explicitly	identifies	other	storage	locations	R{,	R2	Rk	(usually	CPU	registers)	containing	additional	addressing	information.	The	effective	address	A	of	an	operand	is	then	some	function	f(D,R]tR2,...,Rk).	In	mostcases	of	interest,	each	operand	is	associated	with	a	single	address	register	R	from	aset	of	general-purpose	address	registers,	and
A	is	computed	by	adding	D	to	the	con-tents	of	R.	that	is,	A:=R	+	D	R	may	also	be	a	special-purpose	address	register	such	as	the	program	counter	PC.There	are	several	reasons	for	using	relative	addressing.	1.	Since	all	the	address	information	need	not	be	included	in	the	instructions,instruction	length	is	reduced.	2.	By	changing	the	contents	of	R,	the
processor	can	change	the	absolute	addressesreferred	to	by	a	block	of	instructions	B.	This	address	modification	permits	theprocessor	to	move	(relocate)	the	entire	block	B	from	one	region	of	main	mem-ory	to	another	without	invalidating	the	addresses	in	B.	When	used	in	this	way,	Rmay	be	referred	to	as	a	base	register	and	its	contents	as	a	base
address.	3.	R	can	be	used	for	storing	indexes	to	facilitate	the	processing	of	indexed	data.	Inthis	role	R	is	called	an	index	register.	The	indexed	items	X(0),	X(\),...,X(k)	arestored	in	consecutive	addresses	in	memory.	The	instruction-address	field	D	con-tains	the	address	of	the	first	item	X(0),	while	the	index	register	R	contains	theindex	i.	The	address	of
item	X(i)	is	D	+	R.	By	changing	the	contents	of	the	indexregister,	a	single	instruction	can	be	made	to	refer	to	any	item	X(i)	in	the	givendata	list.	The	main	drawbacks	of	relative	addressing	are	the	extra	logic	circuits	and	process-ing	time	needed	to	compute	addresses.	So	far	we	have	assumed	that	each	operand	is	a	single	memory	word	and
cantherefore	be	specified	by	a	single	address.	If	an	instruction	must	process	variable-length	data	consisting	of	many	words,	each	operand	specification	is	divided	intotwo	parts:	an	address	field	that	points	to	the	location	of	the	first	word	of	the	oper-and	and	a	length	field	L	that	indicates	the	number	of	words	in	the	operand.	TheCPU	automatically
increments	the	instruction	address	field	as	successive	words	ofthe	operand	are	accessed.	The	access	is	complete	when	L	words	have	beenaccessed.	Indexed	items	are	frequently	accessed	sequentially	so	that	a	reference	to	X(k)stored	in	memory	location	A	is	immediately	followed	by	a	reference	to	X(k	+	1)	orX(k-l)	stored	in	location	A	+	1	or	A	-1.
respectively.	To	facilitate	stepping	througha	sequence	of	items	in	this	manner,	addressing	modes	that	automatically	incrementor	decrement	an	address	can	be	defined;	the	resulting	address-modification	process	CHAPTER	3	Processor	Basics	188	is	called	autoindexing.	In	the	case	of	the	Motorola	680X0	series	[Motorola	1989],	the	address	field	-(A3)
appearing	in	an	assembly-language	instruction	indicates	I	stm	ti	n	s	ts	tnat	me	con,:ents	°ftne	designated	address	register	A3	should	be	decremented	automatically	before	the	instruction	is	executed;	this	process	is	called	predecrementing.Similarly,	(A3)+	specifies	that	A3	should	be	incremented	automatically	after	thecurrent	instruction	has	been
executed	ipostincrementing).	In	each	case	the	amountof	the	address	increment	or	decrement	is	the	length	in	bytes	of	the	indexed	oper-ands.	Most	processors	have	only	a	few,	simple	addressing	modes	for	CPU	registers,principally	direct	and	immediate	addressing.	Immediate	addresses	represent	datavalues	that	come	with	the	instruction	fetch	and	are
placed	in	the	instruction	registerIR.	In	register	direct	addressing,	the	address	(name)	R	of	the	register	containingthe	desired	value	V(R)	appears	in	the	instruction.	The	Motorola	680X0	instruction	MOVE	#99,	Dl	which	means	"move	the	constant	99	to	data	register	D1,"	uses	immediate	address-ing	for	99	and	register	direct	(or	simply	direct)	addressing
for	Dl.	The	term	register	indirect	addressing	refers	to	indirect	addressing	with	a	regis-ter	R	name	in	the	address	field.	It	is	often	used	to	access	memory,	in	which	case	Rbecomes	a	memory	address	register.	For	example,	MOVE.B	(A0),D1	uses	parentheses	to	indicate	that	(A0)	is	an	indirect	address	involving	the	680X0'sA0	addresss	register.	This	move-
byte	instruction—the	opcodes's	.B	suffix	speci-fies	a	1byte	operand—corresponds	to	D1[7:0]:=M(A0)	and	copies	the	byte	addressed	by	A0	into	the	low-order	byte	position	of	data	regis-ter	Dl.	(The	other	three	bytes	of	Dl	are	unchanged.)	An	extension	of	this	address-ing	mode	is	register	indirect	with	offset,	which	can	also	be	viewed	as	a	type	of	baseor
indexed	addressing.	This	mode	is	the	only	memory	addressing	mode	employedby	the	MIPS	RX000	series	(Example	3.5).	The	RXOOO's	store-word	instruction,	forexample,	is	written	as	SW	Rt,	OFFSET(Rs)	(3.29)	where	Rs	is	the	base	register	and	OFFSET	is	a	number	acting	as	an	(immediate)offset	operand.	Instruction	(3.29)	is	equivalent	to	the	HDL
statement	M(Rs	+	OFFSET)	:=	Rt	where	the	offset	is	sign-extended	before	adding	it	to	Rs	to	obtain	the	effectiveaddress	Rs	+	OFFSET.	The	PowerPC	has	two	addressing	modes:	register	indirectwith	offset	as	described	above	(but	called	register	indirect	with	immediate	index)and	a	second	mode	(called	register	indirect	with	index)	in	which	the
effectiveaddress	is	Rs	+	Ri,	where	Ri	is	a	register	name.	The	Motorola	680X0,	like	other	CISC-style	architectures,	has	many	address-ing	modes,	including	the	following:	immediate,	register	direct,	register	indirect,register	indirect	with	postincrement,	register	indirect	with	predecrement,	registerindirect	with	offset,	register	indirect	with	index,
absolute	short,	absolute	long,	PC	with	offset,	and	PC	with	index.	Its	autoindexing	features	are	illustrated	in	the	fol-	189lowing	example.	EXAMPLE	3.6	STACK	CONTROL	IN	THE	MOTOROLA	680X0	[GILL.	CORWIN	and	logar	1987;	motorola	1989].	A	stack	is	a	sequence	of	storage	locationsthat	are	accessible	from	only	one	end	referred	to	as	the	top	of
the	stack.	A	write	opera-tion	addressed	to	a	stack,	termed	a	push	operation,	stores	a	new	item	at	the	top	of	thestack,	while	a	read	operation,	termed	a	pop	operation,	removes	the	item	stored	at	thetop	of	the	stack.	Push	or	pop	changes	the	position	of	the	stack	top	by	an	amount	thatdepends	on	the	length	of	the	operand	pushed	or	popped.	A	stack	is
controlled	by	anaddress	register	called	the	stack	pointer	SP.	This	register	stores	the	address	of	the	lastoperand	placed	in	the	stack;	that	address	is	automatically	adjusted	after	a	push	or	popoperation	so	that	SP	contains	the	address	of	the	new	stack	top.	Some	computers—the	Intel	80X86,	for	example—have	special	instructions	andhardware	for
handling	stacks	that	are	intended	as	communication	areas	for	program-control	instructions	like	call	and	return.	A	few	early	computers	such	as	the	BurroughsB6500/7500	even	employed	stacks	in	place	of	general-register	files;	see	Example	1.5(section	1.2.3).	The	Motorola	680X0	has	no	explicit	hardware	for	stack	support,	but,	aswe	now	show,	its
various	addressing	modes	make	it	easy	to	treat	any	contiguous	regionof	its	external	memory	M	as	a	stack.	Suppose	that	the	programmer	designates	the	address	register	A2	of	the	680X0	tobe	a	stack	pointer	and	that	the	stack	grows	toward	the	low	addresses	of	M.	To	push	thecontents	of	a	data	register,	say,	D6,	into	the	stack	requires	the	single
instruction	MOVE.L	D6,-(A2)	(3.30)	The	input	operand	is	the	4-byte	contents	of	D6,	which	is	directly	addressed	in	(3.30),while	the	output	operand,	which	is	the	new	contents	of	the	top	of	the	stack,	is	designated	by	-(A2),	which	denotes	indirect	addressing	with	predecrementing	using	addressregister	A2.	This	push	instruction	is	equivalent	to	the
following	HDL	operations:	A2	:=	A2	-	4;	M(A2)	:=	D6;	Figure	3.31	shows	the	state	of	the	affected	parts	of	the	CPU	and	M	immediately	before(Figure	3.31a)	and	immediately	after	(Figure	3.316)	execution	of	instruction	(3.30).Observe	how	the	data	bytes	are	stored	in	M	according	to	the	big-endian	convention.It	is	easily	seen	that	the	pop	instruction
corresponding	to	(3.30)	is	MOVE.L	(A2)+,D6	(3.31)	which	is	equivalent	to	D6	:=	M(A2);	A2	:=	A2	+	4;	In	this	case	the	operand	(A2)+	employs	the	register	indirect	with	postincrementaddressing	mode.	Number	of	addresses.	Some	computers,	notably	CISCs	like	the	680X0,	haveinstructions	of	several	different	lengths	containing	various	numbers	of
addresses.A	source	of	controversy	in	the	early	days	was	the	question	of	how	many	explicitoperand	addresses	to	include	in	instructions.	Clearly	the	fewer	the	addresses,	theshorter	the	instruction	format	needed.	However,	limiting	the	number	of	addressesalso	limits	the	range	of	operations	that	an	instruction	can	perform.	Roughlyspeaking,	fewer
addresses	mean	more	primitive	instructions	and	therefore	longer	CHAPTER	3	Processor	Basics	190	SECTION	3.3Instruction	Sets	CPU	D6	=	stack	data	register	B(0,3)	B(0,2)	B(0.1)	B(0.0)	A2	=	stack	pointer	register	OF	FF	78	54	1	word	■	(a)	CPU	D6	=	stack	data	register	B(0,3J	B(0,2)	B,,	P2.	and	P3,	where	P,	is	an	/-address	machine.P0	is	a	zero-
address	stack	machine,	while	/>,.	P2,	and	P3	are	conventional	computerseach	with	16	general-purpose	registers	R0:R15	for	data	and	address	storage.	All	fourprocessors	have	instructions	with	the	(assembly	language)	opcodes	ADD.	SUB,	MUL.	220	SECTION	3.5Problems	31	23	15	7	0	Ra	Ba3	Ba2	Bal	BaO	Rb	Bb3	Bb2	Bbl	BbO	Register	file	(a)	Figure
3.44	Snapshot	of	RX000	state.	Byte	address	(hex)	100101102103104105106107108109	BaO	Bal	Ba2	Ba3	BbO	Bbl	Bb2	Bb3	M	(b)	Byte	resslex)	100	101	BaO	102	Bal	103	Ba2	104	Ba3	105	BbO	106	Bbl	107	Bb2	108	Bb3	109	M	(c)	and	DIV	to	implement	the	operations	+,	-,	X,	and	/,	respectively,	(a)	Using	as	few	in-structions	as	you	can,	write	a	program
for	each	of	the	four	machines	to	evaluate	the	fol-lowing	arithmetic	expression:	X	:=	(A/B	+	CX	D)/(D	XE-F+	C/A)	+	G	(3.44)	Use	standard	names	for	any	additional	instructions	that	you	need,	for	example,	LOADor	PUSH,	(b)	Calculate	the	total	object-program	size	in	bits	for	each	of	your	four	programs	assuming	the	following	data	on	machine-language
instruction	formats:	opcodes(which	contain	no	addressing	information)	are	8	bits	long;	memory-address	length	is16	bits;	and	register-address	length	is	4	bits.	(For	example,	the	two-address	instructionLOAD	R7,B	for	P2,	which	denotes	R7	:=	M(B),	occupies	8	+	4	+	16	=	28	bits.)	3.46.	Figure	3.44a	shows	the	byte-by-byte	contents	of	two	registers	in
the	RX000	generalregister	file,	(a)	Construct	a	short	program	that	transfers	the	data	in	question	from	theregister	file	to	memory	M	exactly	as	indicated	in	Figure	3.446.	(b)	Suppose	that	thesame	two	words	must	be	stored	as	shown	in	Figure	3.44c,	where	they	are	not	alignedwith	memory	word	boundaries.	Suggest	two	methods	for	performing	the	two-
wordstorage	operation	in	this	case.	3.47.	Show	how	each	of	the	following	macroinstructions	can	be	implemented	by	a	singlemachine	instruction	from	the	RX000	instruction	set.	(a)	LI	Rdest.IMM	;	Load	immediate:	load	IMM	(sign-extended)	into	register	Rdest	(b)	MOVE	Rdest,Rsource	;	Move	contents	of	register	Rsource	to	register	Rdest	(c)	NOP	;	No
operation:	execute	an	instruction	cycle	that	does	not	change	the	:	CPU's	state	3.48.	A	new	microprocessor	is	being	designed	with	a	conventional	architecture	employingsingle-address	instructions	and	8-bit	words.	Due	to	physical	size	constraints,	only	eight	distinct	3-bit	opcodes	are	allowed.	The	use	of	modifiers	or	the	address	field	toextend	the
opcodes	is	forbidden,	(a)	Which	eight	instructions	would	you	implement?	Specify	the	operations	performed	by	each	instruction	as	well	as	the	location	of	its	op-erands,	(b)	Demonstrate	that	your	instruction	set	is	functionally	complete	in	some	rea-sonable	sense;	or	if	it	is	not,	describe	an	operation	that	cannot	be	programmed	usingyour	instruction	set.
221	CHAPTER	3	Processor	Basics	3.49.	Write	a	short	code	segment	for	the	RXOOO	to	implement	the	following	common	macro,which	computes	the	absolute	value	of	the	contents	of	register	Rsource	and	puts	the	re-sult	in	register	Rdest.	ABS	Rdest.Rsource	3.50.	There	are	few	well-defined	general	principles	concerning	hardware-software	trade-offs	in
processor	design.	Two	principles	of	this	type	are	given	below.	Write	a	brief	noteon	each,	illustrating	it	with	examples,	(a)	"Whenever	there	is	a	system	function	that	isexpensive	and	slow	in	all	its	generality,	but	where	software	can	recognize	a	frequentlyoccurring	degenerate	case	(or	can	move	the	entire	function	from	run	time	to	compiletime)	that
function	[should	be]	moved	from	hardware	to	software,	resulting	in	lowercost	and	improved	performance."	(George	Radin,	1983)	(b)	"Simple,	frequent,	andhighly-skew	conditional	branches	[e.g.,	tests	for	arithmetic	overflow]	should	be	imple-mented	in	hardware	[rather	than	software]."	(Brian	Randell,	1985)	3.51.	(a)	Explain	how	directives	differ	from
other	assembly-language	instructions,	(b)	Listthe	criteria	for	using	macros	instead	of	subroutines	to	structure	assemblylanguage	pro-grams.	3.52.	A	program	called	a	disassembler	is	sometimes	useful	for	debugging	programs.	It	is	de-signed	to	convert	object	code	to	assembly-language	format,	thus	reversing	the	work	ofan	assembler.	However,	a
disassembler	cannot	recover	all	the	structure	of	the	originalassembly-language	code.	Explain	in	detail	why	this	is	so.	3.53.	Consider	the	processor	and	memory	state	depicted	in	Figure	3.40	and	suppose	that	ex-ecution	of	the	subroutine	continues	to	completion.	Let	the	subroutine's	RETURN	in-struction	be	stored	in	memory	location	2500	(decimal).
Draw	a	diagram	similar	toFigure	3.40	that	shows	the	system	state	at	the	same	three	points	during	the	executionof	RETURN.	3.6REFERENCES	1.	Circello,	J.	et	al.	"The	Superscalar	Architecture	of	the	MC68060."	IEEE	Micro,	vol.15	(April	1995)	pp.	10-21.	2.	Cohen,	D.	"On	Holy	Wars	and	a	Plea	for	Peace."	IEEE	Computer,	vol.	14	(October1981)pp.48-
54.	3.	Colwell,	R.	P.	et	al.	"Computers,	Complexity,	and	Controversy."	IEEE	Computer,	vol.18	(September	1985)	pp.	8-19.	4.	Feustel,	E.	A.	"On	the	Advantages	of	Tagged	Architecture."	IEEE	Transactions	on	Com-puters,	vol.	C-12	(July	1973)	pp.	644-56.	5.	Furber,	S.	B.	VLSI	RISC	Architecture	and	Organization.	New	York:	Marcel	Dekker.1989.	222	6.
Gill,	A.,	E.	Corwin,	and	A.	Logar.	Assembly	Language	Programming	for	the	68000.	Englewood	Cliffs,	NJ:	Prentice-Hall,	1987.	SECTION	3.6	7	Goldberg,	D.	"What	Every	Computer	Scientist	Should	Know	about	Floating-Point	References	Arithmetic."	ACM	Computing	Surveys,	vol.	23	(March	1991)	pp.	5-48.	8.	Hamming,	R.	W.	Coding	and	Information
Theory.	2nd	ed.	Englewood	Cliffs,	NJ:	Pren-tice-Hall,	1986.	9.	IEEE	Inc.	IEEE	Standard	for	Binary	Floating-Point	Arithmetic	(ANSI/IEEE	Std	754-1985),	New	York,	August	1985.	10.	Intel	Corp.	MCS-80/85	Family	User's	Manual.	Santa	Clara,	CA,	1979.	11.	Kane,	G.	and	J.	Heinrich.	MIPS	RISC	Architecture.	Englewood	Cliffs,	NJ:	Prentice-Hall,1992.	12.
Motorola	Inc.	M68000	Family	Programmer's	Reference	Manual.	Phoenix,	AZ,	1989.	13.	Myers,	G.	J.	Advances	in	Computer	Architecture.	2nd	ed.	New	York:	Wiley-Inter-science,	1982.	14.	Patterson,	D.	A.	and	C.H.	Sequin.	"A	VLSI	RISC."	IEEE	Computer,	vol.	15	(September1982)	pp.	8-21.	15.	Siewiorek,	D.	P.	and	R.	S.	Swarz.	Reliable	Computer
Systems.	2nd	ed.	Burlington,	MA:Digital	Press,	1992.	16.	van	Someren	A.	and	C.	Atack.	The	ARM	RISC	Chip.	Wokingham,	England:	Addison-Wesley,	1994.	CHAPTER	4	Datapath	Design	An	instruction-set	processor	consists	of	datapath	(data	processing)	and	controlunits.	This	chapter	addresses	the	register-level	design	of	the	datapath	unit,
whileChapter	5	covers	the	control	unit.	The	focus	is	on	the	arithmetic	algorithms	and	cir-cuits	needed	to	process	numerical	data.	These	circuits	are	examined	first	for	fixed-point	numbers	(integers)	and	then	for	floating-point	numbers.	The	use	of	pipeliningto	speed	up	data	processing	is	also	discussed.	4.1	FIXED-POINT	ARITHMETIC	The	design	of
circuits	to	implement	the	four	basic	arithmetic	instructions	for	fixed-point	numbers—addition,	subtraction,	multiplication,	and	division—is	the	maintopic	of	this	section.	It	also	discusses	the	implementation	of	logic	instructions	andALU	design.	4.1.1	Addition	and	Subtraction	Add	and	subtract	instructions	for	fixed-point	binary	numbers	are	found	in
theinstruction	set	of	every	computer.	In	smaller	machines	such	as	microcontrollersthey	are	the	only	available	arithmetic	instructions.	As	we	have	seen	in	earlier	chap-ters,	addition	and	subtraction	hardware	(Example	2.7)	or	software	(Example	3.1)can	be	used	to	implement	multiplication	and,	in	fact,	any	arithmetic	operation.Beginning	with	Charles
Babbage,	computer	designers	have	devoted	considerableeffort	to	the	design	of	high-speed	adders	and	subtracters.	As	we	will	see.	thesebasic	circuits	can	be	designed	in	many	different	ways	that	involve	various.trade-offs	between	operating	speed	and	hardware	cost.	223	224	SECTION	4.1	Fixed-Point	Arithmetic	Basic	adders.	First	consider	the	design
of	a	circuit	to	add	two	n-bit	unsignedbinary	numbers,	a	topic	discussed	in	section	2.1.3.	The	fastest	such	adder	is,	inprinciple,	a	two-level	combinational	circuit	in	which	each	of	the	n	sum	bits	isexpressed	as	a	(logical)	sum	of	products	or	product	of	sums	of	the	n	input	vari-ables.	In	practice,	such	a	circuit	is	feasible	for	very	Small	values	of	n	only,	as
itrequires	c{n)	gates	with	fan-in	f(n),	where	both	c(n)	and	f(n)	grow	exponentiallywith	n.	Practical	adders	take	the	form	of	multilevel	combinational	or,	occasionally,sequential	circuits.	They	sacrifice	operating	speed	for	a	reduction	in	circuit	com-plexity	as	measured	by	the	number	and	size	of	the	components	used.	In	general,	theaddition	of	two	/7-bit
numbers	X	and	Y	is	performed	by	subdividing	the	numbersinto	stages	X,	and	Yt	of	length	nt,	where	n>	«,	>	1.	Xi	and	K,	are	added	separately,and	the	resulting	partial	sums	are	combined	to	form	the	overall	sum.	The	formationof	this	sum	involves	assimilation	of	carry	bits	generated	by	the	partial	additions.	The	sum	zi,ci	of	two	1-bit	numbers	x,	and	v,
can	be	expressed	by	the	half-adderlogic	equations	z,	=	x,	0	>>,where	zt	is	the	sum	bit,	c,	is	the	carry-out	bit,	©	denotes	EXCLUSIVE-OR,	andjuxtaposition	denotes	AND.	If	we	introduce	a	third	input	bit	c,_,	denoting	a	carry-insignal,	we	obtain	the	following	full-adder	equations:	c,	=	jr,y,+	x,r,_1	+	y,c,_1	(4.1)	(Note	that	+	denotes	logical	OR—not	plus—
here.)	A	full	adder,	also	called	a	1-bit	adder,	can	be	directly	implemented	from	these	equations	in	various	ways,	asdemonstrated	by	Figure	2.9	(section	2.1.1).	Figure	4.1	shows	a	fast	AND-ORrealization	of	a	1-bit	adder,	along	with	an	appropriate	circuit	symbol	for	use	inregister-level	designs.	The	least	expensive	circuit	in	terms	of	hardware	cost	for
adding	two	«-bitbinary	numbers	is	a	serial	adder,	the	design	of	which	was	covered	in	Example	2.2.A	serial	adder	adds	the	numbers	bit	by	bit	and	so	requires	n	clock	cycles	to	com-pute	the	complete	sum	of	two	n-bit	numbers.	As	Figure	4.2	indicates,	a	serial	adderconsists	of	a	full	adder	realizing	Equations	(4.1)	and	a	flip-flop	to	store	c,.	One	sumbit	is
generated	in	each	clock	cycle;	a	carry	is	also	computed	and	stored	for	use	dur-ing	the	next	clock	cycle.	Figure	4.2	presents	a	high-level	view	of	a	serial	adder	thathas	a	D	flip-flop	as	the	carry	store.	Although	this	adder	is	slow,	its	circuit	size	isvery	small	and	is	independent	of	n.	Circuits	that,	in	one	clock	cycle,	add	all	bits	of	two	«-bit	numbers,	as	well
asan	external	carry-in	signal	cin,	are	called	n-bit	parallel	adders	or	simply	n-bitadders.	The	simplest	such	adder	is	formed	by	connecting	n	full	adders	as	in	Figure4.3.	Each	1-bit	adder	stage	supplies	a	carry	bit	to	the	stage	on	its	left.	A	1	appear-ing	on	the	carry-in	line	of	a	1-bit	adder	can	cause	it	to	generate	a	1	on	its	carry-out	line.	Hence	carry	signals
propagate	through	the	adder	from	right	to	left,	givingrise	to	the	name	ripplecarry	adder.	In	the	worst	case	a	carry	signal	can	ripplethrough	all	n	stages	of	the	adder.	The	input	carry	signal	cm	is	normally	set	to	0for	addition.	The	maximum	signal	propagation	delay	of	an	«-bit	ripple-carryadder,	which	in	synchronous	circuit	design	determines	the
operating	speed,	is	nd,	fc>	Sum;,Carrv	out	c,	(a)	(b)	Figure	4.1	A	1-bit	(full)	adder:	(a)	two-level	AND-OR	logic	circuit	and	(b)	symbol.	where	d	is	the	delay	of	a	full-adder	stage.	Unlike	a	serial	adder,	the	amount	ofhardware	in	a	ripple-carry	adder	increases	linearly	with	n,	the	word	size	of	thenumbers	being	added.	Subtracters.	Adders	like	those	of
Figures	4.2	and	4.3	operate	correctly	onboth	unsigned	and	positive	numbers	because	the	0	sign	bit	of	a	positive	numberhas	the	same	effect	as	a	leading	zero	in	an	unsigned	number.	The	best	way	to	add	225	CHAPTER	4Datapath	Design	Data	Carry	Sum.	Reset	Clock	Figure	4.2	A	serial	binary	adder.	226	SECTION	4.1	Fixed-Point	Arithmetic	L	J	1-
bitadder	1-bitadder	cn-i	rr	Ti	-^n-l	>'n-I	xn-l	Vn-l	1-bitadder	*0	^0	Figure	4.3	An	n-bit	ripple-carry	adder	composed	of	n	1-bit	(full)	adders.	negative	numbers—these	have	1	as	the	sign	bit—depends	on	the	number	code	inuse.	Adding	-X	to	Y	is	equivalent	to	subtracting	X	from	Y,	so	the	ability	to	add	neg-ative	numbers	implies	the	ability	to	do	subtraction.
Subtraction	is	relatively	simple	with	twos-complement	code	because	negation(changing	X	to	-X)	is	very	easy	to	implement.	As	discussed	in	section	3.2.2,	if	X	=xn_x	xn_2...x0	is	a	twos-complement	integer,	then	negation	is	realized	by	-X	=	-l*n-2.	.	Xn	+	1	(4.2)	where	+	denotes	addition	modulo	2".	An	efficient	way	to	obtain	the	ones-comple-ment	portion
X	=	xn_xxn_2...	x0	of	-X	in	(4.2)	uses	the	word-based	EXCLUSIVE-OR	functionX®	s	with	a	control	variable	s.	When	s	=	0,	X©	s	=	X,	but	when	5=1,X	©	5	=	X.	Suppose	that	Y	and	X	©	s	are	now	applied	to	the	inputs	of	an	n-bitadder.	The	addition	of	1	required	by	(4.2)	to	change	X	to	-X	can	be	realized	byapplying	s	to	the	carry	input	line	of	the	adder.	In
the	resulting	circuit	shown	in	Fig-ure	4.4,	the	control	line	s	selects	theaddition	operation	Y	+	X	when	5	=	0	and	thesubtraction	operation	Y	—	X	=	Y	+	X	+	1	when	5=1.	Thus	extending	a	paralleladder	to	perform	twoscomplement	subtraction	as	well	as	addition	merely	requiresconnecting	n	two-input	EXCLUSIVE-OR	gates	to	the	adder's	inputs;	these
gatesare	represented	by	a	single	rcbit	word	gate	in	Figure	4.4.	z	=	Y±X	1	\	n	Carry	Carry	^	cn-\	rc-bit	paralleladder	Cin	in	out	i	".	i	/	-i	n,	*	(\	".,-	Subtract	s	Figure	4.4	An	n-bit	twos-complement	adder-subtracter.	As	an	example,	let	X	=	11101011	and	Y	=	00101000,	denoting	-2110	and	4010,	227	respectively,	in	twos-complement	code.	Bit-by-bit
addition	produces	v	J	v	J	y	CHAPTER	4	Z	=	X+Y=	11101011	+00101000	=	00010011	(4.3)	Datapath	Design	which	corresponds	to	-21,0	+	4010	=	+1910.	(Observe	that	the	output	carry	c„_,	=	1in	(4.3)	is	ignored.)	To	subtract	X	from	Y,	we	first	compute	-X=	1110	10	11+	1=00010101	and	then	the	sum	Z	=	(-X)	+	Y	=	00010101	+	00101000	=	00111101
which	corresponds	to	2110	+	4010	=	+6110.	Subtraction	is	not	so	readily	implemented	in	the	case	of	unsigned	or	sign-mag-nitude	numbers.	It	is	sometimes	useful	to	construct	a	subtracter	for	such	numbersbased	on	the	full	(1-bit)	subtracter	function	z,	=	y,	-	xt	-	bt_x.	This	operation	isdefined	by	the	logic	equations:	Z;=X,@y,0&;_l	b,	=	xiyi+xibi_i+
>>,_!	Here	z,	is	the	difference	bit,	while	b,_,	and	b{	are	the	borrow-in	and	borrow-out	bits,respectively,	n-bit	serial	or	parallel	binary	subtracters	are	constructed	in	essentiallythe	same	way	as	the	corresponding	adders	with	carry	signals	replaced	by	borrows.Subtracters	are	of	minor	interest	compared	with	adders,	because,	as	we	have	justseen,	an
adder	suffices	for	both	addition	and	subtraction	when	twos-complementnumber	code	is	used.	Overflow.	When	the	result	of	an	arithmetic	operation	exceeds	the	standardword	size	n,	overflow	occurs.	With	n-bit	unsigned	numbers,	overflow	is	indicatedby	an	output	carry	bit	c„_,	=	1.	For	example,	adding	the	unsigned	numbers	X	=11101011	=	23510	and
Y=	00101010	=	4210	using	an	adder	like	that	of	Figure	4.3yields	Z=X+	Y=	11101011	+00101010	=	00010101	(4.4)	with	c„_[=	c7	=1.	Now	Zcorresponds	to	2110,	which	is	235]0	+	4210	(modulo	256)and	is	the	result	of	addition	that	"wraps	around"	when	the	largest	number	2"	-	1.	inthis	case	11111111	=	25510,	is	exceeded.	On	appending	c7	to	Z,	we
get	c7Z	=100010101	=	27710	=	25610	+	2110,	which	is	the	sum	in	ordinary	(modulo	infinity)arithmetic.	Unsigned	arithmetic	operations	are	often	viewed	as	modulo-2"	opera-tions	only,	and	overflow	is	not	explicitly	detected.	This	is	the	case	when	computingmemory	addresses	in	a	computer,	for	instance,	where	addresses	simply	wraparound	to	zero
after	the	highest	address	is	reached.	Overflow	is	indicated	by	a	flag	bit	v	in	operations	involving	signed	numbers;this	flag	is	found	in	CPU	status	(condition	code)	registers.	If	we	reinterpret	thenumbers	in	the	preceding	example	as	twos-complement	rather	than	as	unsigned,then	X	=	11101011	denotes	-2110,	while	Y	=	00101010	denotes	+421().	The
result	Zcomputed	in	(4.4)	now	denotes	+2110,	and	the	fact	that	cn_l	=	1	does	not	indicateoverflow.	In	fact,	we	can	never	have	overflow	on	adding	a	positive	to	a	negativenumber.	Overflow	in	modulo-2"	twos-complement	addition	can	only	result	fromadding	two	positive	numbers	or	two	negative	numbers.	In	the	first	case	overflow	228	SECTION	4.1
Fixed-Point	Arithmetic	is	indicated	by	a	carry	bit	into	the	sign	position,	that	is,	by	c„_2	=	1,	since	this	indi-cates	that	the	magnitude	of	the	sum	exceeds	the	n	-	1	bits	allocated	to	it.	A	littlethought	shows	that	overflow	from	adding	two	negative	numbers	is	indicated	bycn_2	=	0.	We	can	thus	conclude	(as	we	did	earlier	in	section	3.2.2)	that	the	over-flow
condition	is	specified	by	the	logic	expression	L7!-l->7!-lLn-2	+	X	n-Vn-\Ln-2	(4.5)	Now	c„_,,	the	carry	output	signal	from	the	sign	position,	is	defined	by	xn_lyn_l	+xn_iCn_2	+	}'„_icn-2'	fr°m	which	it	follows	that	v	=	c„	(4.6)	Either	(4.5)	or	(4.6)	can	be	used	to	design	overflow	detection	logic	for	twos-complement	addition	or	subtraction.	Overflow
detection	in	the	case	of	sign-magnitude	numbers	is	similar	and	is	left	as	an	exercise	(problem	4.6).	High-speed	adders.	The	general	strategy	for	designing	fast	adders	is	to	reducethe	time	required	to	form	carry	signals.	One	approach	is	to	compute	the	input	carryneeded	by	stage	i	directly	from	carrylike	signals	obtained	from	all	the	precedingstages	i	-
l,i	-	2,...,0,	rather	than	waiting	for	normal	carries	to	ripple	slowly	fromstage	to	stage.	Adders	that	use	this	principle	are	called	carry-lookahead	adders.	An/i-bit	carry-lookahead	adder	is	formed	from	n	stages,	each	of	which	is	basically	afull	adder	modified	by	replacing	its	carry	output	line	c,	by	two	auxiliary	signalscalled	gj	and	/?,,	or	generate	and
propagate,	respectively,	which	are	defined	by	thefollowing	logic	equations:	&=*#	Pi=xi+yt	(4-7)	The	name	generate	comes	from	the	fact	that	stage	i	generates	a	carry	of	1	(c,	=	1)independent	of	the	value	of	ct_x	if	both	x,	and	y,	are	1;	that	is.	if	x,v,	=	1.	Stage	ipropagates	cM;	that	is,	it	makes	c,	=	1	in	response	to	c,_,	=1	if	x,	or	y,	is	1—in	otherwords,
if	Xj	+	y,	=	1.	Now	the	usual	equation	c,	=	jc,v,+	*,',	O-i	Dataout	53	S2	5[S0	Select	5	Figure	4.29	An	n-bit	logic	unit	that	realizesall	16	two-variable	functidns.	254	SECTION	4.2	Arithmetic-Logic	Units	gates.	The	complete	4-bit	ALU	can	therefore	be	expected	to	contain	more	than	100gates	of	various	kinds	and	have	depth	9	or	so.	By	judicious	sharing	of
functionsbetween	the	two	main	subunits,	both	of	these	figures	can	be	reduced	by	a	third,	asthe	next	example	shows.	EXAMPLE	4.4	DESIGN	OF	A	COMBINATIONAL	ARITHMETIC-LOGIC	UNIT	[Hansen	and	hayes	1995].	We	now	examine	the	structure	of	a	well-known	com-binational	ALU	design	that	is	found	in	many	commercial	products	including
me74181,	an	IC	referred	to	as	a	4-bit	ALU/function	generator	[Texas	Instruments	1988].Like	the	circuit	of	Figure	4.29,	this	design	implements	all	16	two-variable	logic	func-tions,	as	well	as	16	arithmetic	functions	(some	of	which,	like	X	Y	plus	A,	are	of	ques-tionable	value).	Its	standard	realization	has	about	60	gates	and	depth	6;	see	problem4.21.	We
will	describe	its	structure	at	the	register	level,	following	the	model	developedin	[Hansen	and	Hayes	1995].	The	main	internal	features	of	the	74181	appear	in	Figure	4.30.	The	key	arithmeticoperation	of	twos-complement	addition	is	implemented	by	the	carry-lookaheadmethod.	As	in	the	design	of	Figure	4.6.	the	adder	consists	of	propagate-generate
logicfeeding	a	lookahead	circuit	that	computes	carries,	and	a	set	of	XOR	gates	that	computethe	final	sum.	The	74181's	carry-lookahead	generator	is	the	same	as	that	given	earlierwith	the	addition	of	propagate	and	generate	outputs	(denoted	p	and	g)	for	extensionpurposes.	However,	the	pg	and	sum	circuits	are	also	designed	to	be	shared	with	thelogic
unit	in	an	efficient,	but	nonobvious	fashion.	The	modules	labeled	M]	and	M2	gen-erate	a	pair	of	4-bit	signals	IP	and	IG	that	serve	as	internal	propagate	and	generate,respectively,	in	the	arithmetic	mode	and	as	minterm	sources	in	the	logic	mode.	FromFigure	4.30	we	see	that	each	data	output	function	Fi	is	defined	by	Ft	=	IPf®	IG/®	(10^	+	M)	(4.34)
Select	5	Carry	in	clr	Mode	M	Figure	4.30	A	register-level	view	of	the	74181	4-bit	ALU.	for	3	>	i	>	0,	where	IC	denotes	the	set	of	four	internal	carries	produced	by	the	carry-lookahead	generator.	The	IP	and	IG	functions	are	defined	by	IP,	=	A,	+	B,S0+B,Sl	(4.35)	IG^AiBfo	+	AjBfo	(4.36)	(See	Figure	4.64	in	this	chapter's	problem	set	for	the	gate-level
implementation	ofthese	functions.)	In	the	logic	mode	of	operation,	M	-	1,	so	(4.34)	becomes	F,	=	IP,	©	Jg	,	(4.37)	On	substituting	(4.35)	and	(4.36)	into	(4.37)	and	simplifying,	we	obtain	Fi	=A	,B,SQ+AfB,S	i	+	AtBS2	+	Afifo	(4.38)	This	expresses	F,(A,,fi()	in	sum-of-minterms	form,	with	a	distinct	(possibly	comple-mented)	select	variable	controlling	each
minterm.	It	therefore	produces	a	differentlogic	function	for	each	of	the	16	possible	combinations	of	the	5	variables,	and	so	isessentially	the	same	as	(4.33).	Hence	with	M=	1,	the	74181	acts	as	a	universal	functiongenerator	capable	of	producing	any	two-variable	Boolean	function	F(A,B).In	the	arithmetic	mode	M	=	0,	and	(4.34)	changes	to
F^/^e/G,©/^.,	This	has	the	general	form	of	a	sum	(or	difference)	output—compare	Equation	(4.11).We	can	interpret	the	entire	output	function	F	=	F3F2F]F0	more	easily	using	the	arithmetic	expression	F	=	IP	plus	IG	plus	c(4.39)	which	is	implied	by	(4.35)	to	(4.37)	when	M	-	1.	Here	plus	denotes	twos-complementaddition	to	distinguish	it	from	+
denoting	logical	OR.	When	S	-	1001,	Equations	(4.35)and	(4.36)	imply	that	IP,	and	IG,	become	the	usual	propagate	and	generate	functions,IPj	=	Aj	+	Bj	and	/G,	=	Afi^	respectively.	Hence	the	control	settings	M	-	1	and	S	=	1001make	the	74181	behave	like	a	carry-lookahead	adder	that	computes	F	=	A	plus	B	plus	cjn	Changing	5	to	0110	produces	the
twos-complement	subtraction	F	=	A	minus	B	minus	cin	and	effectively	reconfigures	the	ALU	as	shown	in	Figure	4.4.	The	various	combinations	of	5	produce	a	total	of	16	different	functions	in	thearithmetic	mode,	only	a	few	of	which	are	useful.	For	example,	with	S	=	0100.	Equation(4.39)	becomes	F	=	1111	plus	0000	plus	cin	which	is	1111	when	cin	=
0,	that	is,	the	constant	minus-one	in	twos-complement	code.When	cjn	=	1,	F	changes	to	0000,	since	we	are	adding	plus-one	to	minus-one.	The	abil-ity	to	generate	constants	like	±1	and	0	in	this	way	is	useful	for	implementing	sometypes	of	instructions.	The74181's/J,	g,	and	coul	outputs	are	intended	to	allow	k	copies	of	the	74181	to	becombined	either
using	ripple-carry	propagation	or	carry-lookahead	to	form	a	4£-bitALU.	Figure	4.31	shows	a	16-bit	ALU	composed	of	four	74181	stages,	with	ripple-carry	propagation	between	stages;	compare	Figure	4.3.	Note	how	the	5	and	AT	control	255	CHAPTER	4Datapath	Design	256	SECTION	4.2	Arithmetic-Logic	Units	lines	are	shared,	while	the	data	lines	are
separate.	Note	too	that	no	interstage	connec-tions	are	needed	for	the	logic	operations	because	of	their	bitwise,	word-oriented	nature.Another	interesting	feature	of	the	74181	is	its	ability	to	act	as	a	magnitude	comparatorin	conjunction	with	the	carry	output	cout;	see	problem	4.23.	The	electronic	circuits	driv-ing	the	74181's	(A	=	B)	output	are

designed	so	that	"when	several	(A	=	B)	lines	arewired	together	as	in	Figure	4.31,	the	wired	connection	outputs	the	AND	function	of	allits	input	signals.	In	other	words,	the	overall	(A	=	B)	output	signal	is	1	if	and	only	if	each74181	slice	produces	(A	=	B)=	1.	This	type	of	technology-specific	connection	is	calleda	wired	AND.	No	extra	gates	or	other	"glue"
logic	are	needed	for	ripple-carry	expan-sion	of	the	74181.	4.2.2	Sequential	ALUs	Although,	as	we	have	seen,	both	multiplication	and	division	can	be	implementedby	combinational	logic,	it	is	generally	impractical	to	merge	these	operations	withaddition	and	subtraction	into	a	single,	combinational	ALU.	The	reason	is	twofold.Combinational	multipliers
and	dividers	are	costly	in	terms	of	hardware.	They	arealso	much	slower	than	addition	and	subtraction	circuits,	a	consequence	of	theirmany	logic	levels.	An	n-bit	combinational	multiplier	or	divider	is	typically	com-posed	of	n	or	more	levels	of	add-subtract	logic,	making	multiplication	and	divisionat	least	n	times	slower	than	addition	or	subtraction.	The
number	of	gates	in	themultiply-divide	logic	is	also	greater	by	a	factor	of	about	n.	Hence	except	when	n	isvery	small,	complete	ALUs	are	usually	constructed	from	low-cost	sequential	cir-cuits	where	add	and	subtract	each	take	one	clock	cycle,	while	multiplication	anddivision	are	multicycle	operations.	Basic	design.	Figure	4.32	shows	a	widely	used
sequential	ALU	design	thataims	at	minimizing	hardware	costs.	This	ALU	organization	is	found	in	the	IAScomputer	(Figure	1.11)	and	in	many	computers	built	after	IAS.	It	is	intended	to	(A	=	B)	(A	=	B)	F>	Aw'.Aa	SiiiSo	Fn.Fi	(A=B)	Fv-Fn	741814-bitALU	4,<	4,>	A-,:A4	By.Bt	741814-bitALU	ALU	•*—|	A	A	4.-	4,A3A0	ByB0	-is—	SM	Figure	4.31	A	16-bit
combinational	ALU	composed	of	four	74181s	linked	by	ripple-carry	propagation.	Systembus	Accumulator	AC	Multiplier-quotientregister	MQ	Parallel	adder	andlogic	circuits	(Memory)	dataregister	DR	Flags	Control	unit	Figure	4.32	Structure	of	a	basic	sequential	ALU.	257	CHAPTER	4Datapath	Design	implement	multiplication	and	division	using	one	of
the	sequential	digit-by-digitshift-and-add/subtract	algorithms	discussed	earlier.	Three	one-word	registers	areused	for	operand	storage:	the	accumulator	AC,	the	multiplier-quotient	register	MQ.and	the	data	register	DR.	AC	and	MQ	are	organized	as	a	single	register	AC.MQcapable	of	leftand	right-shifting.	Additional	data	processing	is	provided	by
acombinational	ALU	capable	of	addition,	subtraction,	and	logical	operations;	wewill	refer	to	this	unit	as	the	add-subtract	unit.	This	unit	derives	its	inputs	from	ACand	DR	and	places	its	results	in	AC.	The	MQ	register	is	so-called	because	it	storesthe	multiplier	during	multiplication	and	the	quotient	during	division.	DR	stores	themultiplicand	or	divisor,
while	the	result	(product	or	quotient	and	remainder)	isstored	in	the	register-pair	AC.MQ.	The	role	of	these	registers	is	defined	conciselyas	follows:	Addition	Subtraction	Multiplication	Division	AND	OR	EXCLUSIVE-OR	NOT	AC	:=	AC	+	DRAC	:=	AC	-	DRAC.MQ	:=	DR	x	MQAC.MQ	:=	MQ/DRAC	:=	AC	and	DRAC	:=	AC	or	DRAC	:=	AC	xor	DRAC	:=
not(AC)	DR	can	serve	as	a	memory	data	register	to	store	data	addressed	by	an	instructionaddress	field	ADR.	Then	DR	can	be	replaced	by	M(ADR)	in	the	above	list	of	ALUoperations,	resulting	in	a	one-address	memory-referencing	format.	Register	files.	Modern	CPUs	retain	special	registers	like	the	multiplier-quo-tient	register	MQ	for	multiplication	and
division,	but	the	accumulator	AC	and	thedata	register	DR	are	usually	replaced	by	a	set	of	general-purpose	registers	R(,:Rm_|	known	as	a	register	file	RF.	Each	register	R,	in	RF	is	individually	addressable—itsaddress	is	the	subscript	/—so	that	arithmetic-logic	instructions	can	take	the	generictwoand	three-address	forms	SECTION	4.2	Arithmetic-Logic
Units	R2	:=/(R!,R2)	.	(4.40)	R3:=/(R1,R2)	(4.41)	respectively.	Hence	the	processor	can	retain	intermediate	results	in	fast,	easilyaccessed	registers,	rather	than	having	to	pack	them	off	to	external	memory	M.Clearly	RF	functions	as	a	small	random-access	memory	(RAM)	and,	in	fact,	isoften	implemented	using	a	fast	RAM	technology.	RF	differs	from	M
in	one	impor-tant	respect:	RF	requires	two	or	three	operands	to	be	accessible	simultaneously.For	example,	to	implement	(4.40)	as	a	single-cycle	instruction,	we	must	be	able	toread	R,	and	R2,	and	write	to	R2	in	the	same	clock	cycle.	RF	then	needs	severalaccess	ports	for	simultaneously	reading	from	or	writing	to	several	different	regis-ters.	Hence	a
register	file	is	often	realized	as	a	multiport	RAM.	A	standard	RAMhas	just	one	access	port	with	an	associated	address	bus	ADR	and	data	bus	D.	Thisport	can	be	used	to	read	or	write	the	data	word	in	the	single	word	location	wedenote	by	M(ADR).	To	build	a	multiport	register	file	requires	a	set	of	registers	of	the	appropriatesize	and	several	multiplexers
and	demultiplexers	that	allow	data	words	to	besteered	from	any	desired	registers	to	the	various	output	ports	(read	operations)	orfrom	the	various	input	ports	to	registers	(write	operations).	Of	course,	we	don'twant	several	devices	writing	to	the	same	register	R,	simultaneously,	although	theymay	read	from	several	R/s	simultaneously.	Figure	4.33
shows	a	three-port	registerfile	that	supports	simultaneous	reads	from	two	ports	A	and	5,	while	writing	cantake	place	via	a	third	port	C.	This	file	contains	four	16-bit	registers	and	meets	thedata	access	requirements	of	(4.40)	and	(4.41).	In	the	two-address	case	(4.40),	theaddress	of	R,	is	applied	to	port	A,	while	that	of	R2	is	applied	to	ports	B	and	C.
Figure	4.34	shows	a	representative	datapath	unit	for	implementing	logical	andfixed-point	operations;	it	is	often	referred	to	as	an	integer	or	fixed-point	unit.	Itcontains	a	register	file	RF	and	a	(combinational)	ALU	capable	at	least	of	additionand	subtraction.	Often	specialized	circuitry	is	added	for	multiplication	and	divi-sion	because	the	longer	delay	of
these	operations	and	their	use	of	double-lengthoperands	make	it	difficult	to	include	their	registers	in	RF.	Also	shown	are	linksthat	connect	the	datapath	unit	to	the	external	memory	M	(a	cache	or	main	mem-ory)	and	the	IO	system.	These	links	can	also	connect	to	other	functional	units	suchas	a	floating-point	unit.	ALU	expansion.	It	is	quite	feasible	to
manufacture	an	entire	sequential	ALUfor	fixed-point	w-bit	numbers	on	a	single	IC	chip.	Moreover,	the	ALU	can	easilybe	designed	for	expansion	to	handle	operands	of	size	n	=	km,	or	indeed	any	wordsize	n	>	m,	in	two	ways:	1.	Spatial	expansion:	Connect	k	copies	of	the	m-bit	ALU	in	the	manner	of	a	rip-ple-carry	adder	to	form	a	single	ALU	capable	of
processing	km-b\t	wordsdirectly.	The	resulting	array-like	circuit	is	said	to	be	bit	sliced	because	eachcomponent	ALU	concurrently	processes	a	separate	"slice"	of	m	bits	from	eachkm-b\\.	operand.	Data	in	C16L	Address	C	Address	A	PortC	Register	fileRF	Portal	|Portfi	Address	B	Writeaddress	C	Tel	ieT	Data	out	A	Data	out	B(a)	Data	in	C16L	J-	4-way	16-
bitdemultiplexer	16J,	16|	16	L	16	L	16-bit	register	R3	16	X	16-bit	register	R2	16	JL.	16-bit	register	R,	16	16-bit	register	Rq	16	Readaddress	A	4-way	16-bitmultiplexer	Data	out	A	4-way	16-bit	/	2	Readmultiplexer	s/	address	B	16LData	out	B	(b)	Figure	4.33	A	register	file	with	three	access	ports:	(a)	symbol	and	(b)	logic	diagram.	259	CHAPTER	4Datapath
Design	2.	Temporal	expansion:	Use	one	copy	of	the	m-bit	ALU	chip	in	the	manner	of	aserial	adder	to	perform	an	operation	on	/cm-bit	words	in	k	consecutive	steps(clock	cycles).	In	each	step	the	ALU	processes	a	separate	m-bit	slice	of	eachoperand.	This	processing	is	called	multicycle	or	multiple-precision	processing.	The	16-bit	ALU	in	Figure	4.31
composed	of	four	copies	of	the	4-bit	74181	ICis	an	example	of	a	bit-sliced	combinational	ALU.	The	hardware	cost	of	a	bit-slicedALU	such	as	this	increases	directly	with	k,	the	number	of	slices,	but	the	ALU'sperformance	measured,	say,	in	cycles	per	instruction	(CPI),	remains	essentiallyconstant.	The	cycle	period	does	increase	slowly	with	k,	however.	In
a	multicycleALU,	on	the	other	hand,	the	performance	decreases	directly	with	k.	but	the	amountof	hardware	remains	constant.	A	multicycle	ALU	must	be	controlled	by	a	(micro)program	that	repeatedly	applies	the	same	basic	instruction	to	all	slices	of	the	oper-ands,	which	must	be	supplied	serially	(slice	by	slice)	to	the	ALU.	260	SECTION	4.2
Arithmetic-Logic	Units	(Micro)	program	control	unit	To	M	and	IO	system	Figure	4.34	A	generic	datapath	unit	with	an	ALU	and	a	register	file.	Figure	4.35	shows	how	a	16-bit	ALU	can	be	constructed	from	four	4-bitsequential	ALU	slices.	The	data	buses	and	register	files	of	the	individual	slices	areeffectively	juxtaposed	to	increase	their	size	from	4	to	16
bits.	The	control	lines	thatselect	and	sequence	the	operations	to	be	performed	are	connected	to	every	slice	sothat	all	slices	execute	the	same	actions	in	lockstep	with	one	another.	Each	slice	thusperforms	the	same	operation	on	a	different	4-bit	part	(slice)	of	the	input	operandsand	produces	only	the	corresponding	part	of	the	results.	The	required
control	sig-nals	are	derived	from	an	external	control	unit,	which	can	be	hardwired	or	micro-programmed.	Certain	operations	require	information	to	be	exchanged	betweenslices.	For	example,	to	implement	a	shift	operation,	each	slice	must	be	able	to	senda	bit	to,	and	receive	a	bit	from,	its	left	or	right	neighbors.	Similarly,	when	perform-ing	addition	or
subtraction,	carry	bits	must	be	transmitted	between	neighboringslices.	For	this	purpose	horizontal	connections	are	provided	between	the	slices	asshown	in	Figure	4.35.	A	multicycle	implementation	of	the	16-bit	ALU	of	Figure	4.35	would	requirethe	basic	4-bit	ALU	to	store	internally	all	the	information	that	needs	to	beexchanged	between	slices.	Add
and	shift	operations	require	only	modest	changeslike	extra	flip-flops	to	store	the	output	carry	and	shift	signals,	as	well	as	(micro)instructions	of	the	add-withcarry	type	that	make	use	of	these	stored	signals.	Multi-plication	and	division	require	more	significant	changes.	EXAMPLE	4.5	THE	ADVANCED	MICRO	DEVICES	2901	BIT-SLICED	ALU	[MICK
AND	brick	1980).	AMD	introduced	the	2900	series	of	ICs	for	bit-slicedprocessor	design	in	the	mid-1970s.	Its	elegant	design	has	been	widely	imitated,	and	its	principal	members	are	included	in	recent	VLSI	cell	libraries	[AT&T	Microelectronics1994].	The	2901	IC	is	the	simplest	of	several	4-bit	ALU	slices	in	the	2900	family.	Ithas	the	internal
organization	depicted	in	Figure	4.36	and	executes	a	small	set	of	opera-tions	usually	specified	by	microinstructions.	A	combinational	arithmetic-logic	circuitC	performs	three	arithmetic	operations	(twos-complement	addition	and	subtraction)and	five	logical	operations	on	4-bit	operands.	The	particular	operation	to	be	carried	outby	C	is	defined	by	a	9-bit
(micro)	instruction	bus	I	intended	to	be	driven	by	an	externalcontrol	unit.	A	pair	of	combinational	shifters	allow	results	generated	by	C	to	be	left-	orright-shifted	to	facilitate	the	implementation	of	multiplication,	division,	and	so	on	viashift-and-add/subtract	algorithms.	The	2901	has	a	general-register	organization	withsixteen	4-bit	registers	organized	as
a	16	x	4-bit	register	file	R[0:15],	referred	to	as	"theRAM."	An	additional	register	designated	Q	is	designed	to	act	as	the	multiplierquotientregister	when	implementing	multiplication	or	division.	C	obtains	its	inputs	either	fromthe	RAM,	Q,	or	an	external	input	data	bus	D;	all-0	constant	input	operands	may	also	be	261	CHAPTER	4Datapath	Design	Data
16,	Shift	*■signals	_	Carry	outand	flags	Slice	[15:12]	Register	file—ICombinationalALU	Controlcircuits	Slice	[11:8]	^\	Register	file	CombinationalALU	Controlcircuits	Slice	[7:4]	Register	file	CombinationalALU	Controlcircuits	Slice	[3:0]	Register	file	CombinationalALU	Controlcircuits	Shiftsignals	Carry	in	Control	Figure	4.35	Sixteen-bit	ALU	composed
of	four	4-bit	slices.	262	SECTION	4.2	Arithmetic-Logic	Units	RAM3	>*Q34	A	7^RAMaddresses	4B	*Carry	out	cout	-«Carrylookahead	Sign	F3	-*Overflow	OVR	-*Zero	Z	-*Data	in	D4/	RAM	shifter	4,'	B	16	x	4-bitregister	file	(RAM)A	B	0	Q	shifter	4:	r	Q	register	1	1	1	I	1	1	1	Multiplexer	4/	Multiplexer	4/	4-bit	arithmetic-logic	circuit	C	Instruction	I
7*Decoder	4/	RAMq	Qo	Carry	in	cn	\	Multiplexer	/	Data	out	Y	Figure	4.36	Organization	of	the	2901	4-bit	ALU	slice.	specified.	The	RAM	registers	to	be	used	as	operand	sources	or	destinations	are	speci-fied	by	the	4-bit	A	and	B	address	buses,	which	are	also	derived	from	an	external	micro-instruction.	The	results	generated	by	C	can	be	stored	internally
in	the	2901	and/orplaced	on	the	external	output	data	bus	Y.	A	set	of	k	2901s	can	be	interconnected	according	to	the	one-dimensional	arraystructure	of	Figure	4.35	to	form	a	processor	with	essentially	the	same	properties	as	the2901	but	handling	4/c-bit	instead	of	4-bit	data.	The	instruction	bus	I	and	the	RAMaddress	buses	A	and	B	are	the	main	control
lines	that	are	connected	in	common	to	allslices.	Direct	connections	between	the	shifters	on	adjacent	slices	permit	shifting	to	beextended	across	the	entire	processor	array.	Each	slice	produces	a	carry-out	signal	cout	that	can	be	connected	to	the	carry-in	line	cin	of	the	slice	on	its	left,	allowing	arithmeticoperations	to	be	extended	across	the	array	via	the
bit-sliced	scheme	of	Figure	4.7.	Ripple-carry	connections	between	slices	have	the	drawback	that	carry-propagationtime	increases	rapidly	with	the	number	of	slices.	Consequently,	the	2901	and	other	bitsliced	ALUs	also	support	the	implementation	of	carry	lookahead	in	the	style	of	Figure4.5.	To	this	end.	the	2901	produces	(in	complemented	form)	the
g	and	p	signalsrequired	for	carry	lookahead,	and	an	external	carry-lookahead	circuit	generates	the	cinsignals	for	the	slices	(except	the	right-most	one)	from	the	g's	and	p's	of	all	precedingslices.	The	2900	series	has	an	IC	for	this	purpose,	namely,	the	2902	4-bit	carry-lookahead	generator,	which	is	a	fast,	two-level	logic	circuit	that	implements
Equations(4.10).	The	2901	also	produces	three	flag	signals	providing	status	information	on	thecurrent	result	F	from	the	arithmetic-logic	circuit	C.	The	zero	flag	Z	indicates	whetherthe	all-0	result	F	=	0000	occurred;	the	overflow	flag	OVR	indicates	whether	overflowoccurred	during	arithmetic	operations;	and	the	sign	flag	F3	is	the	value	of	the	left-
mostbit	of	F.	A	16-bit	ALU	composed	of	four	copies	of	the	2901	appears	in	Figure	4.37.This	circuit	employs	carry	lookahead.	and	also	shows	how	the	flag	signals	for	the	arrayare	produced	(compare	Figure	4.31).	The	290l's	9-bit	control	bus	I	contains	three	3-bit	fields—Is,	IF,	and	ID—whichspecify	the	operand	sources,	the	ALU	function,	and	the	result
destinations,	respec-tively;	see	Figure	4.38.	ID	is	also	used	to	control	shifting	of	the	result;	this	is	indicatedby	multiplication	by	2	(left	shift)	or	division	by	2	(right	shift)	in	the	figure.	The	variouspossible	combinations	of	the	three	I	fields	define	the	290l's	microinstruction	set	andenable	a	large	number	of	distinct	register-transfer	operations	to	be
specified.	For	exam-ple,	the	subtraction	R[6]:=R[7]-R[6]	263	CHAPTER	4Datapath	Design	F3	OVR	**	Z	nM),	then	the	shifting	process	toalign	one	of	the	mantissas,	say,	XM	in	AC,	will	result	in	AC	=	0	after	nM	steps.	Con-tinued	shifting	to	make	E	=	0	will	not	affect	the	result,	which	in	this	case	will	beYM.	Note	also	that	it	is	more	efficient	to	terminate
the	shifting	after	nM	steps	insteadof	IEI	steps,	as	is	done	in	Figure	4.42.	Figure	4.43	shows	the	step-by-step	application	of	the	addition	algorithm	ofFigure	4.42	to	two	32-bit	floating-point	numbers.	The	numbers	have	the	32-bit	for-mat	of	the	IEEE	Standard	754	described	in	Example	3.4.	In	this	format	each	num-ber	N	has	a	23-bit	fractional	mantissa	M
with	a	hidden	bit.	an	8-bit	exponent	E	inexcess-127	code,	and	a	base	B	=	2.	The	value	of	/Vis	therefore	given	by	the	formula	The	numbers	to	be	added	in	this	instance	are	AT	=	0	01111111	10000000000000000000000Y=0	10000111	00101011010000000000000	270	SECTION	4.3Advanced	Topics	register	AC	Kf-LO],	DR^m-IiO].	E[/»e-1:0],	El[nE-l:0],
E2[nE-l:0],	AC_OVERFLOW,	ERROR;BEGIN:	AC_OVERFLOW	:=	0,	ERROR	:=	0.	LOAD:	El	:=	XE,	AC	:=	XM:	E2	:=	YE,	DR	:=	YM;	{Compare	and	equalize	exponents}	COMPARE:	E:=E1-E2;	EQUALIZE:	if	E	<	0	then	AC	:=	right-shift(AC),	E	:=	E	+	1,	go	to	EQUALIZE;	else	if	E	>	0	then	DR	:=	right-shift(DR),	E	:=	E	-	1,go	to	EQUALIZE;	{Add	mantissas}
ADD:	AC	:=	AC	+	DR,	E	:=	max(El,E2);	{Adjust	for	mantissa	overflow	and	check	for	exponent	overflow}	OVERFLOW:	if	AC_OVERFLOW	=	1	then	begin	if	E	=	EMAX	then	go	to	ERROR:AC	:=	right-shift(AC),	E	:=	E	+	1,	go	to	END;	end	{Adjust	for	zero	result}	ZERO:	if	AC	=	0	then	E	:=	0.	go	to	END;	{Normalize	result}	NORMALIZE:	if	AC	is
normalized	then	go	to	END;	UNDERFLOW:	if	E	>	EMIN	then	AC	:=	left-shift(AC),	E	:=	E	-	1,	go	to	NORMALIZE;	{Set	error	flag	indicating	overflow	or	underflow}	ERROR:	ERROR	:=	1;	END:	Figure	4.42	Algorithm	for	floating-point	addition.	which	denote	+1.510and	+299.25,0,	respectively.	The	exponent	subtraction	XE	-	YEin	the	COMPARE	step	is
done	using	excess-127	code	and	produces	11110111	=-810.	Note	that	a	0	in	the	left-most	bit	position	of	E	always	indicates	a	negativenumber	in	this	code	(see	Figure	3.25).	Now	the	EQUALIZE	step	is	executed,	caus-ing	E	to	be	incremented	and	AC,	which	contains	the	mantissa	of	X	(including	itshidden	bit),	to	be	right-shifted.	After	eight	shifts,	E
reaches	zero,	indicated	by	itsleft-most	bit	changing	from	0	to	1.	Then	the	mantissa	addition	takes	place,	and	thelarger	exponent	is	transferred	from	El	to	E.	The	sum	appearing	in	AC	is	normal-ized,	so	the	final	result	X	+	Y	=	300.7510	has	its	exponent	in	E	and	its	mantissa	inAC.	The	sum	is	eventually	stored	in	the	following	standard	format.	X+Y=0
10000111	00101100110000000000000	EXAMPLE	4.6	FLOATING-POINT	ADD	UNIT	OF	THE	IBM	SYSTEM/360	model	91	[Anderson	et	al.	1967].	We	now	briefly	describe	the	floating-point	271	Exponent	registers	Mantissa	registers	CHAPTER	4	Datapath	El	Step	AC	UK	LOAD	01111111	=	*E	10000111	E2	E	00000000	11000000000000...	00
10010101101000...	00	=	^E	=	1-*M	=1-^1	Design	COMPARE	01110111=	XE-YE	EQUALIZE	01111000	01100000000000...	00	01111001	00110000000000.	.00	01111010	00011000000000.	.00	01111011	00001100000000.	.00	01111100	00000110000000.	.00	01111101	00000011000000.	.00	01111110	00000001100000.	.00	01111111
00000000110000.	.00	10000000	10000111	ADD	=	>E	Result	10000111=	(X+50e	10010110011000...	00=	AC	+	DR	10010110011000...	00	=	i.(X+y)M	Figure	4.43	Illustration	of	the	floating-point	addition	algorithm	of	Figure	4.42.	adder	of	the	IBM	System/360	Model	91,	a	mainframe	computer	of	the	mid-1960swhose	advanced	design	features,
including	caches	and	several	types	of	instruction-level	parallelism,	were	very	influential.	Figure	4.44	shows	the	datapath	of	the	Model91	's	add	unit.	It	adds	or	subtracts	32-bit	and	64-bit	numbers	having	the	floatingpointformat	specific	to	the	System/360	family	and	its	successors	(see	section	3.2.3).	Thegeneral	algorithm	of	Figure	4.42	is	used	with
some	changes	to	increase	speed.	In	par-ticular,	the	shifting	needed	to	align	the	mantissas	and	subsequently	to	normalize	theirsum	is	carried	out	by	combinational	logic	(barrel	shifters)	rather	than	by	shift	registers.These	shifters	allow	k	hexadecimal	digits	(recall	that	the	base	B	is	16)	to	be	shiftedsimultaneously.	The	corresponding	subtraction	of	k
from	the	exponent	required	fornormalization	is	also	done	in	one	clock	cycle	by	using	an	extra	adder	(adder	31.	The	operation	of	this	floating-point	adder	unit	is	as	follows.	The	exponents	of	theinput	operands	are	placed	in	registers	El	and	E2,	and	the	corresponding	mantissas	areplaced	in	Ml	and	M2.	Next	E2	is	subtracted	from	El	using	adder	1:	the
result	is	used	toselect	the	mantissa	to	be	right-shifted	by	shifter	1	and	also	to	determine	the	length	ofthe	shift.	For	example,	if	El	>	E2	and	El	-	E2	=	k,	M2	is	right-shifted	by	k	digit	posi-tions,	that	is.	4k	bit	positions.	The	shifted	mantissa	is	then	added	to	or	subtracted	fromthe	other	mantissa	via	adder	2,	a	56-bit	parallel	adder	with	several	levels	of
carry	look-ahead.	The	resulting	sum	or	difference	is	placed	in	a	temporary	register	R	where	it	isexamined	by	a	special	combinational	circuit,	the	zero-digit	checker.	The	output	z	ofthis	circuit	indicates	the	number	of	leading	0	digits	(or	leading	Fs	in	the	case	of	nega-tive	numbers)	of	the	number	in	R.	The	number	z	is	then	used	to	control	the	final	nor-
malization	step.	The	contents	of	R	are	left-shifted	z	digits	by	shifter	2.	and	the	result	isplaced	in	register	M3.	The	corresponding	adjustment	is	made	to	the	exponent	by	sub-tracting	z	using	adder	3.	In	the	event	that	R	=	0,	adder	3	can	be	used	to	set	all	bits	of	E3to	0,	which	denotes	an	exponent	of	-64.	272	Data	SECTION	4.3Advanced	Topics	El	E2	Ml
M2	"3_r	Adder1	E1-E2	Shifter	1	Adder	2	"	\\	ll	Adder3	Zero-digitchecker	.	„	Shifter	2	E3	Data	Exponent	comparison	and	mantissa	alignment	Mantissaaddition-subtraction	Resultnormalization	M3	Figure	4.44	Floating-point	add	unit	of	the	IBM	System/360	Model	91.	Coprocessors.	Complicated	arithmetic	operations	like	exponentiation	and	trig-
onometric	functions	are	costly	to	implement	in	CPU	hardware,	while	softwareimplementations	of	these	operations	are	slow.	A	design	alternative	is	to	use	auxil-iary	processors	called	arithmetic	coprocessors	to	provide	fast,	low-cost	hardwareimplementations	of	these	special	functions.	In	general,	a	coprocessor	is	a	separateinstruction-set	processor
that	is	closely	coupled	to	the	CPU	and	whose	instructionsand	registers	are	direct	extensions	of	the	CPU's.	Instructions	intended	for	thecoprocessor	are	fetched	by	the	CPU,	jointly	decoded	by	the	CPU	and	the	coproces-sor,	and	executed	by	the	coprocessor	in	a	manner	that	is	transparent	to	the	pro-grammer.	Specialized	coprocessors	like	this	are	used
for	tasks	such	as	managingthe	memory	system	or	controlling	graphics	devices.	The	MIPS	RX000	series,	forexample,	was	designed	to	allow	the	CPU	to	operate	with	up	to	four	coprocessors[Kane	and	Heinrich	1992].	One	of	these	is	a	conventional	floating-point	processor,which	is	implemented	on	the	main	CPU	chip	in	later	members	of	the	series.
Coprocessor	instructions	can	be	included	in	assembly	or	machine	code	justlike	any	other	CPU	instructions.	A	coprocessor	requires	specialized	control	logic	tolink	the	CPU	with	the	coprocessor	and	to	handle	the	instructions	that	are	executedby	the	coprocessor.	A	typical	CPU-coprocessor	interface	is	depicted	in	Figure4.45.	The	coprocessor	is	attached
to	the	CPU	by	several	control	lines	that	allow	the	Coprocessoraddressdecoder	Select	CPU	Coprocessor	■"	Busy	Interrupt	request	Synchronization	signals	k	i	1	r	1	System	bus	.	To	main	memoryJ	and	10	devices	Figure	4.45	Connections	between	a	CPU	and	a	coprocessor.	activities	of	the	two	processors	to	be	coordinated.	To	the	CPU,	the	coprocessor	is
apassive	or	slave	device	whose	registers	can	be	read	and	written	into	in	much	thesame	manner	as	external	memory.	Communication	between	the	CPU	and	copro-cessor	to	initiate	and	terminate	execution	of	coprocessor	instructions	occurs	auto-matically	as	coprocessor	instructions	are	encountered.	Even	if	no	coprocessor	isactually	present,
coprocessor	instructions	can	be	included	in	CPU	programs,because	if	the	CPU	knows	that	no	coprocessor	is	present,	it	can	transfer	programcontrol	to	a	predetermined	memory	location	where	a	software	routine	implement-ing	the	desired	coprocessor	instruction	is	stored.	This	type	of	CPU-generated	inter-ruption	of	normal	program	flow	is	termed	a
coprocessor	trap.	Thus	thecoprocessor	approach	makes	it	possible	to	provide	either	hardware	or	software	sup-port	for	certain	instructions	without	altering	the	source	or	object	code	of	the	pro-gram	being	executed.	A	coprocessor	instruction	typically	contains	the	following	three	fields:	anopcode	F0	that	distinguishes	coprocessor	instructions	from
other	CPU	instructions,the	address	F]	of	the	particular	coprocessor	to	be	used	if	several	coprocessors	areallowed,	and	finally	the	type	F2	of	the	particular	operation	to	be	executed	by	thecoprocessor.	The	F2	field	can	include	operand	addressing	information.	By	havingthe	coprocessor	monitor	the	system	bus,	it	can	decode	and	identify	a
coprocessorinstruction	at	the	same	time	as	the	CPU;	the	coprocessor	can	then	proceed	to	exe-cute	the	coprocessor	instruction	directly.	This	approach	is	found	in	some	earlycoprocessors	but	has	the	major	drawback	that	the	coprocessor,	unlike	the	CPU,does	not	know	the	contents	of	the	registers	defining	the	current	memory	addressingmodes.
Consequently,	it	is	common	to	have	the	CPU	partially	decode	every	copro-cessor	instruction,	fetch	all	required	operands,	and	transfer	the	opcode	and	oper-ands	directly	to	the	coprocessor	for	execution.	This	is	the	protocol	followed	in680X0-based	systems	employing	the	68882	floating-point	coprocessor,	which	isthe	topic	of	the	next	example.	273
CHAPTER	4	Datapath	Design	EXAMPLE	4.7	THE	MOTOROLA	68882	FLOATING-POINT	COPROCESSOR	[motorola	1989].	The	Motorola	68882	coprocessor	extends	680X0-series	CPUs	274	Type	Opcode	Operation	specified	FMOVE	Move	word	to/from	coprocessor	data	or	control	register	SECTION	4.3	Advanced	Topics	Data	transfer	FMOVECR	Move
word	to/from	ROM	storing	constants	(0.0,7t,	e,	etc.)	FMOVEM	Data	processing	FADD	Move	multiple	words	to/from	coprocessor	Add	FCMP	Compare	FDIV	Divide	FMOD	Modulo	remainder	FMUL	Multiply	FPvEM	Remainder	(IEEE	format)	FSCAJLE	Scale	exponent	FSGLMUL	Single-precision	multiply	FSGLDIV	Single-precision	divide	FSUB	Subtract
FABS	Absolute	value	FACOS	Arc	cosine	FASIN	Arc	sine	FATAN	Arc	tangent	FATANH	Hyperbolic	arc	tangent	FCOS	Cosine	FCOSH	Hyperbolic	cosine	FETOX	e	to	the	power	of	x	FETOXMI	(e	to	the	power	of	x)	minus	1	FGETEXP	Extract	exponent	FGETMAN	Extract	mantissa	FINT	Extract	integer	part	FINTPvZ	Extract	integer	part	rounded	to	zero
FLOGN	Logarithm	of	x	to	the	base	e	FLOGNP1	Logarithm	of	x	+	1	to	the	base	e	FLOG	10	Logarithm	to	the	base	10	FLOG2	Logarithm	to	the	base	2	FNEG	Negate	FSIN	Sine	FSINCOS	Simultaneous	sine	and	cosine	FSINH	Hyperbolic	sine	FSQRT	Square	root	FT	AN	Tangent	FTANH	Hyperbolic	tangent	FTENTOX	10	to	the	power	of	x	FTWOTOX	2	to	the
power	of	x	FLOGN	Logarithm	of	x	to	the	base	e	Program	control	FBcc	Branch	if	condition	code	(status)	cc	is	1	FDBcc	Test,	decrement	count,	and	branch	on	cc	FNOP	No	operation	FRESTORE	Restore	coprocessor	state	FSAVE	Save	coprocessor	state	FScc	Set	(cc	=	1)	or	reset	(cc	=	0)	a	specified	byte	FTST	Set	coprocessor	condition	codes	to	specified
values	FTRAPcc	Conditional	trap	Figure	4.46	Instruction	set	of	the	Motorola	68882	floating-point	coprocessor.	like	the	68020	(section	3.1.2)	with	a	large	set	of	floating-point	instructions.	The	68882and	the	68020	are	physically	coupled	along	the	lines	indicated	by	Figure	4.45.	Whiledecoding	the	instructions	it	fetches	during	program	execution,	the
68020	identifiescoprocessor	instructions	by	their	distinctive	opcodes.	After	identifying	a	coprocessorinstruction,	the	68020	CPU	"wakes	up"	the	68882	by	sending	it	certain	control	signals.The	68020	then	transmits	the	opcode	to	a	predefined	location	in	the	68882	that	servesas	an	instruction	register.	The	68882	decodes	the	instruction	and	begins	its
execution,which	can	proceed	in	parallel	with	other	instructions	executed	within	the	CPU	proper.When	the	coprocessor	needs	to	load	or	store	operands,	it	asks	the	CPU	to	carry	out	thenecessary	address	calculations	and	data	transfers.	The	68882	employs	the	IEEE	754	floating-point	number	formats	described	inExample	3.4	with	certain	multiple-
precision	extensions;	it	also	supports	a	decimalfloatingpoint	format.	From	the	programmer's	perspective,	the	68882	adds	to	the	CPUa	set	of	eight	80-bit	floating-point	data	registers	FP0:FP7	and	several	32-bit	controlregisters,	including	instruction	(opcode)	and	status	registers.	Besides	implementing	awide	range	of	arithmetic	operations	for	floating-
point	numbers,	the	68882	has	instruc-tions	for	transferring	data	to	and	from	its	registers,	and	for	branching	on	conditions	itencounters	during	instruction	execution.	Figure	4.46	summarizes	the	68882's	instruc-tion	set.	These	coprocessor	instructions	are	distinguished	by	the	prefix	F	(floating-point)	in	their	mnemonic	opcodes	and	are	used	in
assembly-language	programs	justlike	regular	680X0-series	instructions;	see	Fig.	3.12.	The	status	or	condition	codes	ccgenerated	by	the	68882	when	executing	floating-point	instructions	include	invalidoperation,	overflow,	underflow,	division	by	zero,	and	inexact	result.	Coprocessor	sta-tus	is	recorded	in	a	control	register,	which	can	be	read	by	the	host
CPU	at	the	end	of	aset	of	calculations,	enabling	the	CPU	to	initiate	the	appropriate	exception-processingresponse.	As	some	coprocessor	instructions	have	fairly	long	(multicyle)	executiontimes,	the	68882	can	be	interrupted	in	the	middle	of	instruction	execution.	Its	statemust	then	be	saved	and	subsequently	restored	to	complete	execution	of	the
interruptedinstruction.	275	CHAPTER	4	Datapath	Design	The	appearance	of	coprocessors	stems	in	part	from	the	fact	that	until	the	1980sIC	technology	could	not	provide	microprocessors	of	sufficient	complexity	toinclude	on-chip	floating-point	units.	Once	such	microprocessors	became	possible,arithmetic	coprocessors	began	to	migrate	onto	CPU
chips,	losing	some	of	their	sep-arate	identity	in	the	process	—especially	in	the	case	of	CISC	processors.	For	exam-ple,	the	1990-vintage	Motorola	68040	microprocessor	integrates	a	68882-stylefloating-point	coprocessor	with	a	68020-style	CPU	in	a	single	microprocessor	chip[Edenfield	et	al.	1990].	Arithmetic	coprocessors	provide	an	attractive	way	of
aug-menting	the	performance	of	a	RISC	CPU	without	affecting	the	simplicity	and	effi-ciency	of	the	CPU	itself.	The	multiple	function	(execution)	units	in	superscalarmicroprocessors	like	the	Pentium	resemble	coprocessors	in	that	each	unit	has	aninstruction	set	that	it	can	execute	independently	of	the	program	control	unit	and	theother	execution	units.
4.3.2	Pipeline	Processing	Pipelining	is	a	general	technique	for	increasing	processor	throughput	withoutrequiring	large	amounts	of	extra	hardware	[Kogge	1981;	Stone	1993].	It	is	appliedto	the	design	of	the	complex	datapath	units	such	as	multipliers	and	floating-point	276	SECTION	4.3Advanced	Topics	adders.	It	is	also	used	to	improve	the	overall
throughput	of	an	instruction	set	pro-cessor,	a	topic	to	which	we	return	in	Chapter	5.	Introduction.	A	pipeline	processor	consists	of	a	sequence	of	m	data-processing	cir-cuits,	called	stages	or	segments,	which	collectively	perform	a	single	operation	on	astream	of	data	operands	passing	through	them.	Some	processing	takes	place	ineach	stage,	but	a	final
result	is	obtained	only	after	an	operand	set	has	passedthrough	the	entire	pipeline.	As	illustrated	in	Figure	4.47,	a	stage	5,	contains	a	multi-word	input	register	or	latch	R:,	and	a	datapath	circuit	C,	that	is	usually	combina-tional.	The	/?,-'s	hold	partially	processed	results	as	they	move	through	the	pipeline;they	also	serve	as	buffers	that	prevent
neighboring	stages	from	interfering	with	oneanother.	A	common	clock	signal	causes	the	/v,'s	to	change	state	synchronously.Each	Rj	receives	a	new	set	of	input	data	D,_,	from	the	preceding	stage	5,_!	exceptfor	R\	whose	data	is	supplied	from	an	external	source.	D,_,	represents	the	resultscomputed	by	Ci_]	during	the	preceding	clock	period.	Once	Dj_l
has	been	loadedinto	Rh	Cj	proceeds	to	use	D,_,	to	compute	a	new	data	set	Dt.	Thus	in	each	clockperiod,	every	stage	transfers	its	previous	results	to	the	next	stage	and	computes	anew	set	of	results.	At	first	sight	a	pipeline	seems	a	costly	and	slow	way	to	implement	the	targetoperation.	Its	advantage	is	that	an	m-stage	pipeline	can	simultaneously
process	upto	m	independent	sets	of	data	operands.	These	data	sets	move	through	the	pipelinestage	by	stage	so	that	when	the	pipeline	is	full,	m	separate	operations	are	being	exe-cuted	concurrently,	each	in	a	different	stage.	Furthermore,	a	new,	final	resultemerges	from	the	pipeline	every	clock	cycle.	Suppose	that	each	stage	of	the	m-stage	pipeline
takes	T	seconds	to	perform	its	local	suboperation	and	store	itsresults.	Then	7"	is	the	pipeline's	clock	period.	The	delay	or	latency	of	the	pipeline,that	is,	the	time	to	complete	a	single	operation,	is	therefore	mT.	However,	thethroughput	of	the	pipeline,	that	is,	the	maximum	number	of	operations	completedper	second	is	1/7/.	Equivalently,	the	number	of
clock	cycles	per	instruction	or	CPIis	one.	When	performing	a	long	sequence	of	operations	in	the	pipeline,	its	perfor-mance	is	determined	by	the	delay	(latency)	T	of	a	single	stage,	rather	than	by	thedelay	mT	of	the	entire	pipeline.	Hence	an	m-stage	pipeline	provides	a	speedup	fac-tor	of	m	compared	to	a	nonpipelined	implementation	of	the	same	target
operation.	Control	unit	1	r)ata	R	'p	i	r	■r	ii	'i	C.	R-	c.	"*..."*	R	C	in	Dataout	—v	V	Stage	S|	Stage	S2	VStage	S„	Figure	4.47	Structure	of	a	pipeline	processor.	Any	operation	that	can	be	decomposed	into	a	sequence	of	suboperations	ofabout	the	same	complexity	can	be	realized	by	a	pipeline	processor.	Consider,	forexample,	the	addition	of	two	normalized
floating-point	numbers	x	and	y,	a	topicdiscussed	in	section	4.3.1.	This	operation	can	be	implemented	by	the	followingfour-step	sequence:	compare	the	exponents,	align	the	mantissas	(equalize	the	expo-nents),	add	the	mantissas,	and	normalize	the	result.	These	operations	require	thefour-stage	pipeline	processor	shown	in	Figure	4.48.	Suppose	that	x
has	the	normal-ized	floating-point	representation	(xM,xE),	where	xM	is	the	mantissa	and	xE	is	theexponent	with	respect	to	some	base	B	=	2k.	In	the	first	step	of	adding	x	=	(xMjcE)	toy	=	(yM,yE),	which	is	executed	by	stage	S{	of	the	pipeline,	xE	and	yE	are	compared,an	operation	performed	by	subtracting	the	exponents,	which	requires	a	fixed-
pointadder	(see	Example	4.6).	S{	identifies	the	smaller	of	the	exponents,	say,	xE,	whosemantissa	xM	can	then	be	modified	by	shifting	in	the	second	stage	S2	of	the	pipelineto	form	a	new	mantissa	x'M	that	makes	(x'M,yE)	=	(xM,xE).	In	the	third	stage	themantissas	x'M	and	yM,	which	are	now	properly	aligned,	are	added.	This	fixed-pointaddition	can
produce	an	unnormalized	result;	hence	a	fourth	and	final	step	isneeded	to	normalize	the	result.	Normalization	is	done	by	counting	the	number	k	ofleading	zero	digits	of	the	mantissa	(or	leading	ones	in	the	negative	case),	shiftingthe	mantissa	k	digit	positions	to	normalize	it,	and	making	a	corresponding	adjust-ment	in	the	exponent.	Figure	4.49
illustrates	the	behavior	of	the	adder	pipeline	when	performing	asequence	of	N	floating-point	additions	of	the	form	x(+	y,	for	the	case	N	=	6.	Addsequences	of	this	type	arise	when	adding	two	yV-component	real	(floating-point)vectors.	At	any	time,	any	of	the	four	stages	can	contain	a	pair	of	partially	processedscalar	operands	denoted	Qt,,y,)	in	the
figure.	The	buffering	of	the	stages	ensures	thatS,	receives	as	inputs	the	results	computed	by	stage	5,_,	during	the	preceding	clockperiod	only.	If	Tis	the	pipeline's	clock	period,	then	it	takes	time	4T	to	compute	thesingle	sum	x,	+	y,;	in	other	words,	the	pipeline's	delay	is	AT.	This	value	is	approxi-mately	the	time	required	to	do	one	floating-point	addition
using	a	nonpipelinedprocessor	plus	the	delay	due	to	the	buffer	registers.	Once	all	four	stages	of	the	pipe-line	have	been	filled	with	data,	a	new	sum	emerges	from	the	last	stage	S4	every	Tseconds.	Consequently,	N	consecutive	additions	can	be	done	in	time	(N	+	3)T,implying	that	the	four-stage	pipeline's	speedup	is	277	CHAPTER	4	Datapath	Design
S(4)	=	4NN+3	x	-	(xM.	xE)	>'	=	(>'m.Ve)	Data	Exponent	Ri	Exponentadder	*:	Mantissashifter	c2	R3	Mantissaadder	c3	adder	and	R>	mantissa	shifter	Q	Stage	5,(Exponentcomparison)	Stage	S2	(Mantissaalignment)	'VStage	S3(Mantissaaddition)	Stage	54(Normalization)	Figure	4.48	Four-stage	floating-point	adder	pipeline.	Dataout	278	SECTION
4.3Advanced	Topics	(*6-	>6>	(x5,y5)	(x6,y6)	(x4,	y4)	(x5,	y5)	(x6,	y6)	(xj.yj)	(xA,y4)	(x5,y5)	(x6,y6)	(x2,y2)	(x3,y3)	(x4,y4)	(xs,y5)	(x6,y6)	(*i.yi)	~1~	(*2-	-v2)	(x3,	y3)	nrri	(^i.yi)	X	(*2-	>2)	Ui.yi)	Current	result	Time	t	*	*	*	(*4-	>'4)	(*i.	^5)	(*6-	>'6>	•	♦	*	C*3-	>'3>	(*4-	>'*)	(*5-	>5>	♦	♦	*	C*2.	>2)	(*3-	>3)	(*4-	>4)	ft	(r,,y,)	(x2.	\;l	'3>	t	t	♦	C*5.	>s)	1	*	*
♦	♦	•	♦	•	♦	*	•	(*e-	ye)	*	(*5->'5>	6)	♦	♦	1	(x4,y4)	•*1+>1	-'2	x3	+	yi	x\	+	y*	*5	+	>5	*6	+	>'6	*i+yi	■«2+>'2	•»3+>,3	-«4+>'4	xs+y$	X|+y,	X2	+	>2	^	+	y3	Jt4	+	>'4	*,+>',	*2	+	>'2	*3	+	:y3	x,	+	y,	x2	+	>2	5	6	7	8	9	10	Stage5,	*2	*3	54	Figure	4.49	Operation	of	the	four-stage	floating-point	adder	pipeline.	For	large	N,	5(4)	=	4	so	that	results	are
generated	at	a	rate	about	four	times	that	of	acomparable	nonpipelined	adder.	If	it	is	not	possible	to	supply	the	pipeline	with	dataat	the	maximum	rate,	then	the	performance	can	fall	considerably,	an	issue	to	whichwe	return	in	Chapter	5.	Pipeline	design.	Designing	a	pipelined	circuit	for	a	function	involves	firstfinding	a	suitable	multistage	sequential
algorithm	to	compute	the	given	function.This	algorithm's	steps,	which	are	implemented	by	the	pipeline's	stages,	should	bebalanced	in	the	sense	that	they	should	all	have	roughly	the	same	execution	time.Fast	buffer	registers	are	placed	between	the	stages	to	allow	all	necessary	data	items(partial	or	complete	results)	to	be	transferred	from	stage	to
stage	without	interfer-ing	with	one	another.	The	buffers	are	designed	to	be	clocked	at	the	maximum	ratethat	allows	data	to	be	transferred	reliably	between	stages.	Figure	4.50	shows	the	register-level	design	of	a	floating-point	adder	pipelinebased	on	the	nonpipelined	design	of	Figure	4.44	and	employing	the	four-stageorganization	of	Figure	4.48.	The
main	change	from	the	nonpipelined	case	is	theinclusion	of	buffer	registers	to	define	and	isolate	the	four	stages.	A	further	modifi-cation	has	been	made	to	implement	fixed-point	as	well	as	floating-point	addition.	i	Exponent,	comparison	:	Mantissa1	alignment	Data	J—	1	.	.	Mantissaaddition/subtraction	279	i	Normalization	ji	_L	_	'	1	Si	Ml	M2	LHAF1EK
4Datapath	i	El	E2	_	i	II	I	Design	Adder	1	1	1	,	1,	u	f	II	ji	E4	E5	M4	s2	M5	1	T	1	1	Shifter	1	i	"'	"1	u	\	1	r	t	E6	11	--?"	i	v	*	M6	*3	ii	M7	1	.	iii	Adder	2	ji	■	E7	w	Adder3	Zero-d	er	'	check	r	54	1	R	i	r	Shifter	2	u	1	I	E3	M3	_|_	out	Figure	4.50	Pipelined	version	of	the	floating-point	adder	of	Figure	4.44.	The	circuits	that	perform	the	mantissa	addition	in	stage	53
and	the	correspondingbuffers	are	enlarged,	as	shown	by	broken	lines	in	Figure	4.50.	to	accommodatefull-size	fixed-point	operands.	To	perform	a	fixed-point	addition,	the	input	oper-ands	are	routed	through	53	only,	bypassing	the	other	three	stages.	Thus	the	circuitof	Figure	4.50	is	an	example	of	a	multifunction	pipeline	that	can	be	configuredeither	as
a	four-stage	floating-point	adder	or	as	a	one-stage	fixed-point	adder.	Ofcourse,	fixed-point	and	floating-point	subtraction	can	also	be	performed	by	this	cir-cuit;	subtraction	and	addition	are	not	usually	regarded	as	distinct	functions	in	thiscontext,	however.	280	The	same	function	can	sometimes	be	partitioned	into	suboperations	in	several	section	4	3
different	ways,	depending	on	such	factors	as	the	data	representation,	the	style	of	Advanced	Topics	tne	'°^c	design,	an(*	the	need	to	share	stages	with	other	functions	in	a	multifunction	pipeline.	A	floating-point	adder	can	have	as	few	as	two	stages	and	as	many	assix.	For	example,	five-stage	adders	have	been	built	in	which	the	normalizationstage	(54	in
Figure	4.50)	is	split	into	two	stages:	one	to	count	the	number	k	of	lead-ing	zeros	(or	ones)	in	an	unnormalized	mantissa	and	a	second	stage	to	perform	thek	shifts	that	normalize	the	mantissa.	Whether	or	not	a	particular	function	or	set	of	functions	F	should	be	imple-mented	by	a	pipelined	or	nonpipelined	processor	can	be	analyzed	as	follows.	Sup-pose
that	F	can	be	broken	down	into	m	independent	sequential	steps	Fl,F2,.-.,Fm	sothat	it	has	an	m-stage	pipelined	implementation	Pm.	Let	F,	be	realizable	by	a	logiccircuit	C,	with	propagation	delay	(execution	time)	7*,.	Let	TR	be	the	delay	of	eachstage	Sj	due	to	its	buffer	register	7?,	and	associated	control	logic.	The	longest	7",times	create	bottlenecks	in
the	pipeline	and	force	the	faster	stages	to	wait,	doing	nouseful	computation,	until	the	slower	stages	become	available.	Hence	the	delaybetween	the	emergence	of	two	results	from	Pm	is	the	maximum	value	of	7",.	Theminimum	clock	period	(the	pipeline	period)	Tc	is	defined	by	the	equation	Tc	=	max{r,}	+	TR	for	i	=	1,2,...,m	(4.44)	The	throughput	of
Pm	is	\ITC	=	l/(max{r,}	+	7"R).	A	nonpipelined	implementationPx	of	F	has	a	delay	of	Z/=j	Ti	or,	equivalently,	a	throughput	of	1/(XJ=1	TX	Weconclude	the	m-stage	pipeline	Pm	has	greater	throughput	than	Px\	that	is,	pipeliningincreases	performance	if	Equation	(4.44)	also	implies	that	it	is	desirable	for	all	7",	times	to	be	approximatelythe	same;	that	is,
the	pipeline	stages	should	be	balanced.	Feedback.	The	usefulness	of	a	pipeline	processor	can	sometimes	beenhanced	by	including	feedback	paths	from	the	stage	outputs	to	the	primary	inputsof	the	pipeline.	Feedback	enables	the	results	computed	by	certain	stages	to	be	usedin	subsequent	calculations	by	the	pipeline.	We	next	illustrate	this	important
con-cept	by	adding	feedback	to	a	four-stage	floating-point	adder	pipeline	like	that	ofFigure	4.50.	example	4.8	summation	by	a	pipeline	processor	.	Consider	the	prob-lem	of	computing	the	sum	of	./V	floating-point	numbers	bl,b2,---,bN-	It	can	be	solved	byadding	consecutive	pairs	of	numbers	using	an	adder	pipeline	and	storing	the	partialsums
temporarily	in	external	registers.	The	summation	can	be	done	much	more	effi-ciently	by	modifying	the	adder	as	shown	in	Figure	4.51.	Here	a	feedback	path	has	beenadded	to	the	output	of	the	final	stage	54,	allowing	its	results	to	be	fed	back	to	the	firststage	5|.	A	register/?	has	also	been	connected	to	the	output	of	S4,	so	that	stage's	resultscan	be
stored	indefinitely	before	being	fed	back	to	5,.	The	input	operands	of	the	modified	pipeline	are	derived	from	four	separate	sources:	a	variable	X	that	is	typicallyobtained	from	a	CPU	register	or	a	memory	location;	a	constant	source	K	that	can	applysuch	operands	as	the	all-0	and	all-1	words;	the	output	of	stage	S4,	representing	theresult	computed	by	S4
in	the	preceding	clock	period;	and,	finally,	an	earlier	result	com-puted	by	the	pipeline	and	stored	in	the	output	register	R.	Input	tf	4	i	V	1	\	1	i	r	'	Multiplexer	r*	-	-\	Multiplexer	/-	Input	X	r	1	I	Stage	5,	«---	-4	3	1	1	Stage	52	♦	--	-4	'	r	Stage	S3	■«	-4	i	'	Stage	54	«---	-4	1	Register	/?	r	^	Control	Output	Figure	4.51	Pipelined	adder	with	feedback	paths.	The
jV-number	summation	problem	is	solved	by	the	pipeline	of	Figure	4.51	in	thefollowing	way.	The	external	operands	bx,b2,...,bN	are	entered	into	the	pipeline	in	a	continuous	stream	via	input	X.	This	process	requires	a	sequence	of	register	or	memoryfetch	operations,	which	are	easily	implemented	if	the	operands	are	stored	in	contiguousregister/memory
locations.	While	the	first	four	numbers	bx,b2,bi,bA	are	being	entered,the	all-0	word	denoting	the	floating-point	number	zero	is	applied	to	the	pipeline	inputK,	as	illustrated	in	Figure	4.52	for	times	t	=	1:4.	After	four	clock	periods,	that	is,	at	timet	=	5,	the	first	sum	0	+	bx	=	6,	emerges	from	54	and	is	fed	back	to	the	primary	inputs	ofthe	pipeline.	At	this
point	the	constant	input	K	=	0	is	replaced	by	the	current	result	54	=bv	The	pipeline	now	begins	to	compute	bx	+	b$.	At	t	=	6,	it	begins	to	compute	b2	+	b6;at	/	=	7,	computation	of	fc3	+	bn	begins,	and	so	on.	When	bx	+	b5	emerges	from	the	pipe-line	at	t	=	8,	it	is	fed	back	to	5,	to	be	added	to	the	latest	incoming	number	b9	to	initiatecomputation	of	bt
+	b5	+	b9.	(This	case	does	not	apply	to	Figure	4.52,	where	b%	=	bs	isthe	last	item	to	be	summed.)	In	the	next	time	period,	the	sum	b2	+	bb	emerges	from	thepipeline	and	is	fed	back	to	be	added	to	the	incoming	number	bw.	Thus	at	any	time,	thepipeline	is	engaged	in	computing	in	its	four	stages	four	partial	sums	of	the	form	281	CHAPTER	4	Datapath
Design	bi	+	b1	+	bu+b^	+	...	fc4	+&■	+	&,,	+	fe.fi	+	...	(4.45)	282	SECTION	4.3Advanced	Topics	0	b.	i	L	J	1	(0.M	ii	»	T	(0,	b-,)	HZ	(O.fc,)	z	/	=	1	f	=	2	f	=	3	1	1	(0,	i3)	11	(CAJ	1	(0,6,)	1	J	L	(0,	bA)	JL_	(0,	b3)	(0.	fc,)	HZ	(0J>.i	r	=	4	/	=	5	'	(*i.*s)	1	(0,	64)	*	(0.	fej)	I	rI	(0.	fc2)	'	r	*1	1	I	ib*	b6)	T	(fci.65)	ZIZ	(0.	fc4)	HZ	(0,	fc3)	r	=	6	Figure	4.52	Summation	of
an	eight-element	vector.	r	=	7	'	r	I	(by	b-	1	1	(fe2,	fcfi)	1	(*i.	*5)	I	(0.	fc4)	'	1	&?	(**	*8)	JL	(*>3,	*7>	J_	HZ	(fc,.fc5)	„	+	b3	+	b7	emerges	from	54	at	t	-	16.	At	this	point	theoutputs	of	54	and	R	are	fed	back	to	Sv	The	final	result	is	produced	four	time	periodslater—at	t	=	20	in	the	case	of	N	=	8.	i	I	(0,0)	4	(b4,	b%)	*	(&,.	b,)	4	(*2,	b6)	'	f	bl	+	b5	/	=	9	0	0	1	1
(0,0)	1	(b4	+	bs,	b}	+	b-j)	4	(0.0)	4	(fc,	+	fc5	+	b2	+	fc6)	i	r	0	f=	13	Figure	4.52	(continued)	(fc,	+	65,	b2	+	b6)	z	(0.0)	ziz	ZEZ	(by	b-j)	b2	+	b6	t=	10	0	0	1	1	(0.0)	1	(0,0)	♦	(£>4+	b8,	fc^	+	b-,)	4	(0.0)	'	b}	+	b5	+	b2	+	b6	f=	14	(0,0)	4	(bl	+	/?5.	b->	+	/>6)	41	(0.0)	r	1	(ft4,	fcg)	'	'	b^	+	b-.	t=	11	!	I	(0,0)	*	(0,0)	4	(0,0)	4	(b4	+	b%	+	b-<	+	b-,)	'	r	b^	+	b5
+	b2	+	b6	f=	15	(b4	+	bg,	b3	+	b7)	(0.0)	JL	(fc,	+	fc5,	b2	+	b6	(0,0)	*4	+	*8	f=	12	ZJl.	(bt	+	b5	+	b2	+	b(,b4	+	bg	+	b3	+	b7)	4	(0,0)	HZ	(0.0)	~4~	(0,0)	1ZZ	b,+b<	+	bT	+	b(.	t=	16	283	CHAPTER	4	Datapath	Design	It	is	easily	seen	that	for	the	general	case	of	TV	operands,	the	scheme	of	Figure	4.52can	compute	the	sum	of	N	>	4	floating-point
numbers	in	time	(N	+	11)7",	where	T	is	thepipeline's	clock	period,	that	is.	the	delay	per	stage.	Since	a	comparable	nonpipelinedadder	requires	time	4NT	to	compute	SUM.	we	obtain	a	speedup	here	of	about	4N/(N	+11),	which	approaches	4	as	N	increases.	The	foregoing	summation	operation	can	be	invoked	by	a	single	vector	instruc-tion	of	a	type	that
characterized	the	vector-processing,	pipeline-based	"supercom-puters"	of	the	1970s	and	1980s	[Stone	1993].	For	instance.	Control	Data	Corp.'sSTAR-100	computer	[Hintz	and	Tate	1972]	has	an	instruction	SUM	that	computes	284	SECTION	4.3Advanced	Topics	the	sum	of	the	elements	of	a	specified	floating-point	vector	B	=	(bx,	b2,...,bN)	ofarbitrary
length	N	and	places	the	result	in	a	CPU	register.	The	starting	(base)address	of	B,	which	corresponds	to	a	block	of	main	memory,	the	name	C	of	theresult	register,	and	the	vector	length	N	are	all	specified	by	operand	fields	of	SUM.We	can	see	from	Figure	4.52	that	a	relatively	complex	pipeline	control	sequence	isneeded	to	implement	a	vector
instruction	of	this	sort.	This	complexity	contributessignificantly	to	both	the	size	and	cost	of	vector-oriented	computers.	Moreover,	toachieve	maximum	speedup,	the	input	data	must	be	stored	in	a	way	that	allows	thevector	elements	to	enter	the	pipeline	at	the	maximum	possible	rate—generally	onenumber-pair	per	clock	cycle.	The	more	complex
arithmetic	operations	in	CPU	instruction	sets,	includingmost	floating-point	operations,	can	be	implemented	efficiently	in	pipelines.	Fixed-point	addition	and	subtraction	are	too	simple	to	be	partitioned	into	suboperationssuitable	for	pipelining.	As	we	see	next,	fixed-point	multiplication	is	well	suited	topipelined	design.	Pipelined	multipliers.	Consider	the
task	of	multiplying	two	n-bit	fixed-pointbinary	numbers	X	=	xn_lxn_2..	.x0	and	Y	=)'„_1y„_2-	•	•	v0.	Combinational	array	multi-pliers	of	the	kind	described	in	section	4.1.2	are	easily	converted	to	pipelines	by	theaddition	of	buffer	registers.	Figure	4.53	shows	a	pipelined	array	multiplier	thatemploys	the	1-bit	multiply-and-add	cell	M	of	Figure	4.19	and
has	n	=	3.	Each	cellM	computes	a	1-bit	product	xy	and	adds	it	to	both	a	product	bit	from	the	precedingstage	and	a	carry	bit	generated	by	the	cell	on	its	right.	Thus	the	n	cells	in	each	stageSit	0	<	i	<	n	-	1,	compute	a	partial	product	of	the	form	/>,■	=	/>,-_,+jri2,r	(4.46)	y	a	x	carryout	M	M	X2	JT[X0	A	i	L	Register/?,	M	=1	iRegister	R2	M	4M	^iL	^^	*-3
Register	/f3	M	M	r	i	M	Ps	Pa	Pi	Pi	P\	Figure	4.53	Multiplier	pipeline	using	ripple-carry	propagation.	Xt	M	Pq	with	the	final	product	Pn_x	=	XY	being	computed	by	the	last	stage.	In	addition	tostoring	the	partial	products	in	the	buffer	registers	denoted	/?,,	the	multiplicand	Yand	all	hitherto	unused	multiplier	bits	must	also	be	stored	in	/?,-.	An	/i-stage
multiplier	pipeline	of	this	type	can	overlap	the	computation	of	nseparate	products,	as	required,	for	example,	when	multiplying	fixed-point	vectors,and	can	generate	a	new	result	every	clock	cycle.	Its	main	disadvantage	is	the	rela-tively	slow	speed	of	the	carry-propagation	logic	in	each	stage.	The	number	of	Mcells	needed	is	n2,	and	the	capacity	of	all
the	buffer	registers	is	approximately	3«2(see	problem	4.31);	hence	this	type	of	multiplier	is	also	fairly	costly	in	hardware.For	these	reasons,	it	is	rarely	used.	Multipliers	often	employ	a	technique	called	carry-save	addition,	which	is	par-ticularly	well	suited	to	pipelining.	An	n-bit	carry-save	adder	consists	of	n	disjointfull	adders.	Its	input	is	three	/7-bit
numbers	to	be	added,	while	the	output	consists	ofthe	n	sum	bits	forming	a	word	5	and	the	n	carry	bits	forming	a	word	C.	Unlike	theadders	discussed	so	far,	there	is	no	carry	propagation	within	the	individual	adders.The	outputs	5	and	C	can	be	fed	into	another	«-bit	carry-save	adder	where,	as	shownin	Figure	4.54,	they	can	be	added	to	a	third	n-bit
number	W.	Observe	that	the	carryconnections	are	shifted	to	the	left	to	correspond	to	normal	carry	propagation.	Ingeneral,	m	numbers	can	be	added	by	a	treelike	network	of	carry-save	adders	to	pro-duce	a	result	in	the	form	(5,C).	To	obtain	the	final	sum,	S	and	C	must	be	added	bya	conventional	adder	with	carry	propagation.	Multiplication	can	be
performed	using	a	multistage	carry-save	adder	circuit	ofthe	type	shown	in	Figure	4.55;	this	circuit	is	called	a	Wallace	tree	after	its	inven-tor	[Wallace	1964].	The	inputs	to	the	adder	tree	are	n	terms	of	the	form	M,	=xiY2k.	Here	M,	represents	the	multiplicand	Y	multiplied	by	the	/th	multiplier	bitweighted	by	the	appropriate	power	of	2.	Suppose	that	Mi
is	In	bits	long	and	thata	full	double-length	product	is	required.	The	desired	product	P	is	Z£Tq	M;.	Thissum	is	computed	by	the	carry-save	adder	tree,	which	produces	a	2«-bit	sum	and	a	285	CHAPTER	4	Datapath	Design	*3	x2	Xd	y3	'	z	1'	3	y2	'	z	2	1	Y\	z	i	I	>'o	z	x	y	z	II	i	i	1	CS	adder	w3	/	w2	/	wl	/	"0	w	/	1	/	i	C	S	T	V	T	"	r	T	r	/	1	1	T	T	T	CS	adder	r	▼	«	/	/	i
»	C	5'	$3	$2	*1	-^O	c'-i	ci	c\	Figure	4.54	At	WO	-sta	ge	ca	irn,	-Si	ive	i	iddei	286	SECTION	4.3	I	1.	Advanced	Topics	Multiplier	decodingand	multiplicand	gating	\Y\,	then	set	v„_,	to	0	and	subtract	Yfrom	X	(modulo	2").	3.	X	negative;	Ypositive:	If	in	<	LX1,	subtract	Y	from	X	(modulo	2").	If	in	>	1X1,	set.r„_,	to	0	andsubtract	X	from	Y	(modulo	2").	4.	X	and
Y	both	negative:	Add	X	and	Y	(modulo	2")	and	set	z„_,	to	1.	Figure	4.61	Algorithm	for	subtracting	sign-magnitude	numbers.	295	CHAPTER	4	Datapath	Design	1	n-bit	adder-subtracter	"}	"}	SUB	Figure	4.62	An	n-bit	adder-subtracter	circuit.	lines	appearing	in	the	figure	can	be	used	to	compute	v.	Construct	a	suitable	logic	circuitfor	v.	4.6.	Consider
again	the	adder-subtracter	of	Figure	4.62,	assuming	now	that	it	has	beendesigned	for	sign-magnitude	numbers.	It	computes	Z	=	X	+	Y	when	SUB	=	0	and	Z	=X-	Y	when	SUB	=	1.	Assume	that	the	circuit	contains	an	n-bit	ripple-carry	adder	anda	similar	«-bit	ripple-borrow	subtracter	and	that	you	have	access	to	all	internal	lines.Derive	a	logic	equation
that	defines	an	overflow	flag	v	for	this	circuit.	4.7.	Give	an	informal	interpretation	and	proof	of	correctness	of	the	two	expressions	(4.12)for/?	and	g	that	define	the	propagate	and	generate	conditions,	respectively,	for	a	4-bitcarry-lookahead	generator.	4.8.	Show	how	to	extend	the	16-bit	design	of	Figure	4.8	to	a	64-bit	adder	using	the	sametwo
component	types:	a	4-bit	adder	module	and	a	4-bit	carry-lookahead	generator.	4.9.	Stating	your	assumptions	and	showing	your	calculations,	obtain	an	good	estimate	foreach	of	the	following	for	both	an	n-bit	carry-lookahead	adder	and	an	n-bit	ripplecarryadder:	(a)	the	total	number	of	gates	used;	(b)	the	circuit	depth	(number	of	levels):	and(c)	the
maximum	gate	fan-in.	4.10.	Another	useful	technique	for	fast	binary	addition	is	the	conditional-sum	method.	Itand	a	closely	related	method	called	carry-select	addition	are	based	on	the	idea	of	si-multaneously	generating	two	versions	of	each	sum	bit	s\:	a	version	s],	which	assumesthat	its	input	carry	c,_,	=	1.	and	a	second	version	s?,	which	assumes	that
ct_{	=	0.	Amultiplexer	controlled	by	Ask	the	publishers	to	restore	access	to	500,000+	books.

