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Related	Topics:Differential	EquationsMathematics	\(\rightarrow\)	Differential	Equations	\(\rightarrow\)	Nonlinear	Differential	Equations	Description:	Nonlinear	differential	equations	form	a	subfield	of	differential	equations,	which	is	a	core	area	within	mathematics.	While	differential	equations	in	general	are	equations	that	involve	functions	and	their
derivatives,	nonlinear	differential	equations	are	characterized	by	the	presence	of	nonlinearity	in	these	relationships.	This	nonlinearity	can	occur	in	several	forms,	such	as	products	of	the	function	and	its	derivatives,	powers	of	these	terms,	or	other	non-linear	combinations.	Characteristics	and	Definition	A	differential	equation	is	categorized	as	nonlinear
if	it	cannot	be	written	as	a	linear	combination	of	the	dependent	variable	and	its	derivatives.	In	general	form,	a	nonlinear	differential	equation	can	be	represented	as:	\[	F	\left(	x,	y,	y’,	y’’,	\ldots,	y^{(n)}	\right)	=	0,	\]	where	\(	F	\)	is	a	nonlinear	function	of	the	independent	variable	\(	x	\),	the	dependent	variable	\(	y	\),	and	its	derivatives	\(	y’,	y’’,	\ldots,
y^{(n)}	\).	In	contrast	to	linear	differential	equations,	whose	solutions	can	often	be	superimposed	to	form	new	solutions,	nonlinear	differential	equations	exhibit	much	more	complex	behavior.	Importance	and	Applications	The	study	of	nonlinear	differential	equations	is	crucial	due	to	their	widespread	applications	in	various	scientific	and	engineering
fields	such	as	physics,	biology,	chemistry,	economics,	and	more.	Many	natural	phenomena,	including	fluid	dynamics,	electrical	circuits,	population	dynamics,	and	chaos	theory,	are	governed	by	nonlinear	differential	equations.	Because	of	their	complexity,	these	equations	often	require	special	methods	for	their	study	and	solution.	Solution	Techniques
Solving	nonlinear	differential	equations	can	be	significantly	more	challenging	compared	to	linear	ones.	Exact	solutions	are	rare	and	often	not	possible,	thus	numerous	analytical	and	numerical	techniques	are	employed:	Perturbation	Methods:	These	involve	approximating	the	solution	by	introducing	a	small	parameter,	allowing	the	nonlinear	problem	to
be	treated	as	a	series	of	simpler	problems.	Phase	Plane	Analysis:	This	geometric	approach	involves	studying	the	trajectories	of	systems	of	first-order	nonlinear	differential	equations	in	a	plane,	providing	qualitative	insights	into	the	behavior	of	solutions.	Lyapunov	Methods:	Used	primarily	in	stability	analysis,	Lyapunov	functions	help	assess	whether
the	solutions	of	a	nonlinear	system	remain	close	to	an	equilibrium	point	over	time.	Numerical	Methods:	Techniques	such	as	the	Runge-Kutta	method,	finite	difference	method,	and	shooting	method	are	frequently	used	for	obtaining	approximate	solutions	to	nonlinear	differential	equations.	Examples	1.	Logistic	Growth	Equation:	\[	\frac{dy}{dt}	=	ry
\left(	1	-	\frac{y}{K}	\right),	\]	where	\(	r	\)	is	the	growth	rate	and	\(	K	\)	is	the	carrying	capacity.	This	equation	models	population	growth	limited	by	resources.	2.	The	Van	der	Pol	Oscillator:	\[	\frac{d^2	x}{dt^2}	-	\mu	(1	-	x^2)	\frac{dx}{dt}	+	x	=	0,	\]	where	\(	\mu	\)	is	a	parameter	indicating	the	nonlinearity	and	the	strength	of	the	damping.
Challenges	and	Future	Directions	The	inherent	complexity	and	diverse	behaviors	of	nonlinear	differential	equations	pose	ongoing	challenges	to	mathematicians	and	scientists.	Developing	new	analytical	and	numerical	methods	is	an	active	area	of	research.	Understanding	and	predicting	the	behavior	of	nonlinear	systems	better	can	lead	to	significant
advancements	in	science	and	technology.	In	summary,	nonlinear	differential	equations	represent	a	fascinating	and	vital	area	of	mathematics,	owing	to	their	complex	nature	and	the	myriad	of	applications	across	different	fields.	As	we	continue	to	make	strides	in	this	domain,	we	gain	deeper	insights	into	the	intricacies	of	natural	and	engineered
systems.	A	differential	equation	is	an	equation	that	relates	one	or	more	unknown	functions	and	their	derivatives.	This	type	of	equation	can	take	on	many	different	forms.	The	functions	in	an	application	typically	stand	in	for	physical	quantities,	the	derivatives	for	the	rates	of	change	in	those	values,	and	the	differential	equation	for	defining	the
relationship	between	the	two.	Let’s	start	with	the	basics	and	learn	what	a	linear	differential	equation	is	before	moving	on	to	the	more	complicated	topic	of	a	non-linear	differential	equation.Linear	Equation	Differential:	A	differential	equation	that	is	defined	by	a	linear	polynomial	in	the	unknown	function	and	its	derivatives	is	called	a	linear	differential
equation.The	general	form	of	a	linear	equation	is	a0	(x)	y	+	a1	(x)	y’	+	a2	(x)	y’’	+	…	+	an	(x)	yn	=	b	(x)where	a0(x),	…,	an(x)	and	b(x)	are	arbitrary	differentiable	functions	that	don’t	have	to	be	linear,	and	y′,…,	y(n)	are	the	successive	derivatives	of	an	unknown	function	y	of	the	variable	x.This	kind	of	equation	is	called	an	ordinary	differential	equation.
If	the	unknown	function	depends	on	more	than	one	variable	and	the	derivatives	in	the	equation	are	partial	derivatives,	then	the	linear	differential	equation	can	also	be	called	a	linear	partial	differential	equation.Nonlinear	Differential	EquationA	non-linear	differential	equation	is	one	in	which	the	unknown	function	and	its	derivatives	don’t	have	a
straight	line	when	plotted	in	a	graph	(the	linearity	or	non-linearity	in	the	arguments	of	the	function	are	not	considered	here).	There	aren’t	many	ways	to	solve	nonlinear	differential	equations	exactly,	and	the	ones	that	do	exist	usually	require	the	equation	to	have	certain	symmetries.Over	long	periods	of	time,	nonlinear	differential	equations	can	act	in
very	strange	ways.	This	is	a	sign	of	chaos.	Even	the	most	basic	questions	about	the	existence,	uniqueness	and	extendability	of	solutions	for	nonlinear	differential	equations	and	the	well-posedness	of	initial	and	boundary	value	problems	for	nonlinear	partial	differential	equations	are	hard	to	answer,	and	when	they	are,	it	is	considered	a	big	step	forward
in	mathematical	theory.	But	if	the	differential	equation	is	a	correct	description	of	a	real-world	physical	process,	then	it	should	have	a	solution.Differential	equations	that	are	linear	are	often	used	to	approximate	equations	that	are	not	linear.	These	are	only	close	estimates	that	work	in	certain	situations.For	instance,	the	harmonic	oscillator	equation	is	a
close	approximation	of	the	nonlinear	pendulum	equation	that	works	for	oscillations	with	small	amplitudes.There	are	some	nonlinear	differential	equations	for	which	the	exact	solutions	are	known,	but	many	of	those	that	are	essential	in	applications	do	not	have	known	exact	solutions.	Occasionally,	these	equations	can	be	linearized	using	a	procedure
known	as	expansion,	in	which	the	nonlinear	elements	are	eliminated.	This	cannot	be	done	in	situations	where	nonlinear	terms	provide	significant	contributions	to	the	solution;	nevertheless,	there	are	occasions	when	it	is	sufficient	to	keep	a	few	“small”	ones.	General	FormA	nonlinear	differential	equation	is	an	equation	of	the	formxn+1	=	f(xn,	xn-
1,…)where	x„	is	the	value	of	x	in	generation	n	and	where	the	recursion	function	f	depends	on	nonlinear	combinations	of	its	arguments	(f	may	involve	quadratics,	exponentials,	reciprocals,	or	powers	of	the	x„’s,	and	so	forth).	A	solution	is	again	a	general	formula	relating	x„	to	the	generation	n	and	to	some	initially	specified	values,	e.g.,	x0,	x1,	and	so
on.Difference	Between	Linear	and	Nonlinear	EquationsIn	the	first	set	of	examples,	u	is	a	function	of	x	that	we	don’t	know,	while	c	is	known	constants.	Ordinary	differential	equations	and	partial	differential	equations	can	be	put	into	two	large	groups:	linear	differential	equations	and	nonlinear	differential	equations.	Also,	differential	equations	can	be
divided	into	homogeneous	and	heterogeneous	differential	equations.The	ordinary	differential	equation	for	a	first-order	linear	system	with	a	constant	coefficient	is	du/dx	=	cu	+	x²Homogeneous	second-order	linear	ordinary	differential	equation	is	(du²/dx²)	–	x(du/dx)	+	u	=	0(du²/dx²)	+	ω²u	=	0		is	the	ordinary	differential	equation	for	the	harmonic
oscillator	with	a	homogeneous	second-order	linear	constant	coefficient.du/dx	=	u²	+	4	is	the	first-order	nonlinear	heterogeneous	ordinary	differential	equation.The	motion	of	a	pendulum	of	length	L	is	described	by	the	equation	L	(du²/dx²)	+	g	sin	u	=	0This	equation	is	nonlinear	because	of	the	sine	function.In	the	next	set	of	examples,	the	unknown
function	u	depends	on	two	variables,	x	and	t	or	x	and	y.(∂u/∂t)	+	t(∂u/∂x)	=	0	is	a	homogeneous	first-order	linear	partial	differential	equation.(∂²u/∂x²)	+	(∂²u/∂y²)	=	0	is	the	Laplace	equation	for	a	homogeneous	second-order	linear	constant	coefficient	elliptic	type	partial	differential	equation.Homogeneous	third-order	non-linear	partial	differential
equation(∂u/∂t)	=	6u(∂u/∂x)	−	(∂³u/∂x³)ConclusionA	nonlinear	differential	equation	is	one	that	is	not	linear	with	respect	to	the	unknown	function	and	its	derivatives.	Linear	differential	equations	are	frequently	used	to	approximate	nonlinear	equations.	These	are	simply	approximations	that	work	in	some	circumstances.	The	general	form	of	a	nonlinear
differential	equation	is	xn+1	=	f(xn,	xn-1,…).	A	harmonic	oscillator	equation	is	an	approximation	of	the	nonlinear	pendulum	equation	that	is	valid	for	oscillations	of	modest	amplitude	and	is	an	example	of	non-linear	differential	equations.	A	differential	equation	is	an	equation	that	relates	one	or	more	unknown	functions	and	their	derivatives.	This	type	of
equation	can	take	on	many	different	forms.	The	functions	in	an	application	typically	stand	in	for	physical	quantities,	the	derivatives	for	the	rates	of	change	in	those	values,	and	the	differential	equation	for	defining	the	relationship	between	the	two.	Let’s	start	with	the	basics	and	learn	what	a	linear	differential	equation	is	before	moving	on	to	the	more
complicated	topic	of	a	non-linear	differential	equation.Linear	Equation	Differential:	A	differential	equation	that	is	defined	by	a	linear	polynomial	in	the	unknown	function	and	its	derivatives	is	called	a	linear	differential	equation.The	general	form	of	a	linear	equation	is	a0	(x)	y	+	a1	(x)	y’	+	a2	(x)	y’’	+	…	+	an	(x)	yn	=	b	(x)where	a0(x),	…,	an(x)	and	b(x)
are	arbitrary	differentiable	functions	that	don’t	have	to	be	linear,	and	y′,…,	y(n)	are	the	successive	derivatives	of	an	unknown	function	y	of	the	variable	x.This	kind	of	equation	is	called	an	ordinary	differential	equation.	If	the	unknown	function	depends	on	more	than	one	variable	and	the	derivatives	in	the	equation	are	partial	derivatives,	then	the	linear
differential	equation	can	also	be	called	a	linear	partial	differential	equation.Nonlinear	Differential	EquationA	non-linear	differential	equation	is	one	in	which	the	unknown	function	and	its	derivatives	don’t	have	a	straight	line	when	plotted	in	a	graph	(the	linearity	or	non-linearity	in	the	arguments	of	the	function	are	not	considered	here).	There	aren’t
many	ways	to	solve	nonlinear	differential	equations	exactly,	and	the	ones	that	do	exist	usually	require	the	equation	to	have	certain	symmetries.Over	long	periods	of	time,	nonlinear	differential	equations	can	act	in	very	strange	ways.	This	is	a	sign	of	chaos.	Even	the	most	basic	questions	about	the	existence,	uniqueness	and	extendability	of	solutions	for
nonlinear	differential	equations	and	the	well-posedness	of	initial	and	boundary	value	problems	for	nonlinear	partial	differential	equations	are	hard	to	answer,	and	when	they	are,	it	is	considered	a	big	step	forward	in	mathematical	theory.	But	if	the	differential	equation	is	a	correct	description	of	a	real-world	physical	process,	then	it	should	have	a
solution.Differential	equations	that	are	linear	are	often	used	to	approximate	equations	that	are	not	linear.	These	are	only	close	estimates	that	work	in	certain	situations.For	instance,	the	harmonic	oscillator	equation	is	a	close	approximation	of	the	nonlinear	pendulum	equation	that	works	for	oscillations	with	small	amplitudes.There	are	some	nonlinear
differential	equations	for	which	the	exact	solutions	are	known,	but	many	of	those	that	are	essential	in	applications	do	not	have	known	exact	solutions.	Occasionally,	these	equations	can	be	linearized	using	a	procedure	known	as	expansion,	in	which	the	nonlinear	elements	are	eliminated.	This	cannot	be	done	in	situations	where	nonlinear	terms	provide
significant	contributions	to	the	solution;	nevertheless,	there	are	occasions	when	it	is	sufficient	to	keep	a	few	“small”	ones.	General	FormA	nonlinear	differential	equation	is	an	equation	of	the	formxn+1	=	f(xn,	xn-1,…)where	x„	is	the	value	of	x	in	generation	n	and	where	the	recursion	function	f	depends	on	nonlinear	combinations	of	its	arguments	(f
may	involve	quadratics,	exponentials,	reciprocals,	or	powers	of	the	x„’s,	and	so	forth).	A	solution	is	again	a	general	formula	relating	x„	to	the	generation	n	and	to	some	initially	specified	values,	e.g.,	x0,	x1,	and	so	on.Difference	Between	Linear	and	Nonlinear	EquationsIn	the	first	set	of	examples,	u	is	a	function	of	x	that	we	don’t	know,	while	c	is	known
constants.	Ordinary	differential	equations	and	partial	differential	equations	can	be	put	into	two	large	groups:	linear	differential	equations	and	nonlinear	differential	equations.	Also,	differential	equations	can	be	divided	into	homogeneous	and	heterogeneous	differential	equations.The	ordinary	differential	equation	for	a	first-order	linear	system	with	a
constant	coefficient	is	du/dx	=	cu	+	x²Homogeneous	second-order	linear	ordinary	differential	equation	is	(du²/dx²)	–	x(du/dx)	+	u	=	0(du²/dx²)	+	ω²u	=	0		is	the	ordinary	differential	equation	for	the	harmonic	oscillator	with	a	homogeneous	second-order	linear	constant	coefficient.du/dx	=	u²	+	4	is	the	first-order	nonlinear	heterogeneous	ordinary
differential	equation.The	motion	of	a	pendulum	of	length	L	is	described	by	the	equation	L	(du²/dx²)	+	g	sin	u	=	0This	equation	is	nonlinear	because	of	the	sine	function.In	the	next	set	of	examples,	the	unknown	function	u	depends	on	two	variables,	x	and	t	or	x	and	y.(∂u/∂t)	+	t(∂u/∂x)	=	0	is	a	homogeneous	first-order	linear	partial	differential	equation.
(∂²u/∂x²)	+	(∂²u/∂y²)	=	0	is	the	Laplace	equation	for	a	homogeneous	second-order	linear	constant	coefficient	elliptic	type	partial	differential	equation.Homogeneous	third-order	non-linear	partial	differential	equation(∂u/∂t)	=	6u(∂u/∂x)	−	(∂³u/∂x³)ConclusionA	nonlinear	differential	equation	is	one	that	is	not	linear	with	respect	to	the	unknown	function	and
its	derivatives.	Linear	differential	equations	are	frequently	used	to	approximate	nonlinear	equations.	These	are	simply	approximations	that	work	in	some	circumstances.	The	general	form	of	a	nonlinear	differential	equation	is	xn+1	=	f(xn,	xn-1,…).	A	harmonic	oscillator	equation	is	an	approximation	of	the	nonlinear	pendulum	equation	that	is	valid	for
oscillations	of	modest	amplitude	and	is	an	example	of	non-linear	differential	equations.	Type	of	ordinary	differential	equation	Differential	equations	Scope	Fields	Natural	sciencesEngineering	Astronomy	Physics	Chemistry	Biology	Geology	Applied	mathematics	Continuum	mechanics	Chaos	theory	Dynamical	systems	Social	sciences	Economics
Population	dynamics	List	of	named	differential	equations	Classification	Types	Ordinary	Partial	Differential-algebraic	Integro-differential	Fractional	Linear	Non-linear	By	variable	type	Dependent	and	independent	variables	Autonomous	Coupled	/	Decoupled	Exact	Homogeneous	/	Nonhomogeneous	Features	Order	Operator	Notation	Relation	to
processes	Difference	(discrete	analogue)	Stochastic	Stochastic	partial	Delay	Solution	Existence	and	uniqueness	Picard–Lindelöf	theorem	Peano	existence	theorem	Carathéodory's	existence	theorem	Cauchy–Kowalevski	theorem	General	topics	Initial	conditions	Boundary	values	Dirichlet	Neumann	Robin	Cauchy	problem	Wronskian	Phase	portrait
Lyapunov	/	Asymptotic	/	Exponential	stability	Rate	of	convergence	Series	/	Integral	solutions	Numerical	integration	Dirac	delta	function	Solution	methods	Inspection	Method	of	characteristics	Euler	Exponential	response	formula	Finite	difference	(Crank–Nicolson)	Finite	element	Infinite	element	Finite	volume	Galerkin	Petrov–Galerkin	Green's	function
Integrating	factor	Integral	transforms	Perturbation	theory	Runge–Kutta	Separation	of	variables	Undetermined	coefficients	Variation	of	parameters	People	List	Isaac	Newton	Gottfried	Leibniz	Jacob	Bernoulli	Leonhard	Euler	Joseph-Louis	Lagrange	Józef	Maria	Hoene-Wroński	Joseph	Fourier	Augustin-Louis	Cauchy	George	Green	Carl	David	Tolmé
Runge	Martin	Kutta	Rudolf	Lipschitz	Ernst	Lindelöf	Émile	Picard	Phyllis	Nicolson	John	Crank	vte	In	mathematics,	an	ordinary	differential	equation	is	called	a	Bernoulli	differential	equation	if	it	is	of	the	form	y	′	+	P	(	x	)	y	=	Q	(	x	)	y	n	,	{\displaystyle	y'+P(x)y=Q(x)y^{n},}	where	n	{\displaystyle	n}	is	a	real	number.	Some	authors	allow	any	real	n
{\displaystyle	n}	,[1][2]	whereas	others	require	that	n	{\displaystyle	n}	not	be	0	or	1.[3][4]	The	equation	was	first	discussed	in	a	work	of	1695	by	Jacob	Bernoulli,	after	whom	it	is	named.	The	earliest	solution,	however,	was	offered	by	Gottfried	Leibniz,	who	published	his	result	in	the	same	year	and	whose	method	is	the	one	still	used	today.[5]	Bernoulli
equations	are	special	because	they	are	nonlinear	differential	equations	with	known	exact	solutions.	A	notable	special	case	of	the	Bernoulli	equation	is	the	logistic	differential	equation.	When	n	=	0	{\displaystyle	n=0}	,	the	differential	equation	is	linear.	When	n	=	1	{\displaystyle	n=1}	,	it	is	separable.	In	these	cases,	standard	techniques	for	solving
equations	of	those	forms	can	be	applied.	For	n	≠	0	{\displaystyle	neq	0}	and	n	≠	1	{\displaystyle	neq	1}	,	the	substitution	u	=	y	1	−	n	{\displaystyle	u=y^{1-n}}	reduces	any	Bernoulli	equation	to	a	linear	differential	equation	d	u	d	x	−	(	n	−	1	)	P	(	x	)	u	=	−	(	n	−	1	)	Q	(	x	)	.	{\displaystyle	{\frac	{du}{dx}}-(n-1)P(x)u=-(n-1)Q(x).}	For	example,	in	the
case	n	=	2	{\displaystyle	n=2}	,	making	the	substitution	u	=	y	−	1	{\displaystyle	u=y^{-1}}	in	the	differential	equation	d	y	d	x	+	1	x	y	=	x	y	2	{\displaystyle	{\frac	{dy}{dx}}+{\frac	{1}{x}}y=xy^{2}}	produces	the	equation	d	u	d	x	−	1	x	u	=	−	x	{\displaystyle	{\frac	{du}{dx}}-{\frac	{1}{x}}u=-x}	,	which	is	a	linear	differential	equation.	Let	x	0	∈	(
a	,	b	)	{\displaystyle	x_{0}\in	(a,b)}	and	{	z	:	(	a	,	b	)	→	(	0	,	∞	)	,	if		α	∈	R	∖	{	1	,	2	}	,	z	:	(	a	,	b	)	→	R	∖	{	0	}	,	if		α	=	2	,	{\displaystyle	{\begin{cases}z:(a,b)\rightarrow	(0,\infty	),&{\text{if	}}\alpha	\in	\mathbb	{R}	\smallsetminus	\{1,2\},\\[4pt]z:(a,b)\rightarrow	\mathbb	{R}	\smallsetminus	\{0\},&{\text{if	}}\alpha	=2,\end{cases}}}	be	a	solution	of
the	linear	differential	equation	z	′	(	x	)	=	(	1	−	α	)	P	(	x	)	z	(	x	)	+	(	1	−	α	)	Q	(	x	)	.	{\displaystyle	z'(x)=(1-\alpha	)P(x)z(x)+(1-\alpha	)Q(x).}	Then	we	have	that	y	(	x	)	:=	[	z	(	x	)	]	1	/	(	1	−	α	)	{\displaystyle	y(x):=[z(x)]^{1/(1-\alpha	)}}	is	a	solution	of	y	′	(	x	)	=	P	(	x	)	y	(	x	)	+	Q	(	x	)	y	α	(	x	)			,			y	(	x	0	)	=	y	0	:=	[	z	(	x	0	)	]	1	/	(	1	−	α	)	.	{\displaystyle
y'(x)=P(x)y(x)+Q(x)y^{\alpha	}(x)\	,\	y(x_{0})=y_{0}:=[z(x_{0})]^{1/(1-\alpha	)}.}	And	for	every	such	differential	equation,	for	all	α	>	0	{\displaystyle	\alpha	>0}	we	have	y	≡	0	{\displaystyle	y\equiv	0}	as	solution	for	y	0	=	0	{\displaystyle	y_{0}=0}	.	Consider	the	Bernoulli	equation	y	′	−	2	y	x	=	−	x	2	y	2	{\displaystyle	y'-{\frac	{2y}{x}}=-
x^{2}y^{2}}	(in	this	case,	more	specifically	a	Riccati	equation).	The	constant	function	y	=	0	{\displaystyle	y=0}	is	a	solution.	Division	by	y	2	{\displaystyle	y^{2}}	yields	y	′	y	−	2	−	2	x	y	−	1	=	−	x	2	{\displaystyle	y'y^{-2}-{\frac	{2}{x}}y^{-1}=-x^{2}}	Changing	variables	gives	the	equations	u	=	1	y	,			u	′	=	−	y	′	y	2	−	u	′	−	2	x	u	=	−	x	2	u	′	+	2	x	u
=	x	2	{\displaystyle	{\begin{aligned}u={\frac	{1}{y}}\;&,~u'={\frac	{-y'}{y^{2}}}\\[5pt]-u'-{\frac	{2}{x}}u&=-x^{2}\\[5pt]u'+{\frac	{2}{x}}u&=x^{2}\end{aligned}}}	which	can	be	solved	using	the	integrating	factor	M	(	x	)	=	e	2	∫	1	x	d	x	=	e	2	ln	⁡	x	=	x	2	.	{\displaystyle	M(x)=e^{2\int	{\frac	{1}{x}}\,dx}=e^{2\ln	x}=x^{2}.}	Multiplying	by
M	(	x	)	{\displaystyle	M(x)}	,	u	′	x	2	+	2	x	u	=	x	4	.	{\displaystyle	u'x^{2}+2xu=x^{4}.}	The	left	side	can	be	represented	as	the	derivative	of	u	x	2	{\displaystyle	ux^{2}}	by	reversing	the	product	rule.	Applying	the	chain	rule	and	integrating	both	sides	with	respect	to	x	{\displaystyle	x}	results	in	the	equations	∫	(	u	x	2	)	′	d	x	=	∫	x	4	d	x	u	x	2	=	1	5	x	5
+	C	1	y	x	2	=	1	5	x	5	+	C	{\displaystyle	{\begin{aligned}\int	\left(ux^{2}\right)'dx&=\int	x^{4}\,dx\\[5pt]ux^{2}&={\frac	{1}{5}}x^{5}+C\\[5pt]{\frac	{1}{y}}x^{2}&={\frac	{1}{5}}x^{5}+C\end{aligned}}}	The	solution	for	y	{\displaystyle	y}	is	y	=	x	2	1	5	x	5	+	C	.	{\displaystyle	y={\frac	{x^{2}}{{\frac	{1}{5}}x^{5}+C}}.}	^	Zill,	Dennis
G.	(2013).	A	First	Course	in	Differential	Equations	with	Modeling	Applications	(10th	ed.).	Boston,	Massachusetts:	Cengage	Learning.	p.	73.	ISBN	9780357088364.	^	Stewart,	James	(2015).	Calculus:	Early	Transcendentals	(8th	ed.).	Boston,	Massachusetts:	Cengage	Learning.	p.	625.	ISBN	9781305482463.	^	Rozov,	N.	Kh.	(2001)	[1994],	"Bernoulli
equation",	Encyclopedia	of	Mathematics,	EMS	Press	^	Teschl,	Gerald	(2012).	"1.4.	Finding	explicit	solutions"	(PDF).	Ordinary	Differential	Equations	and	Dynamical	Systems.	Graduate	Studies	in	Mathematics.	Providence,	Rhode	Island:	American	Mathematical	Society.	p.	15.	eISSN	2376-9203.	ISBN	978-0-8218-8328-0.	ISSN	1065-7339.
Zbl	1263.34002.	^	Parker,	Adam	E.	(2013).	"Who	Solved	the	Bernoulli	Differential	Equation	and	How	Did	They	Do	It?"	(PDF).	The	College	Mathematics	Journal.	44	(2):	89–97.	ISSN	2159-8118	–	via	Mathematical	Association	of	America.	Bernoulli,	Jacob	(1695),	"Explicationes,	Annotationes	&	Additiones	ad	ea,	quae	in	Actis	sup.	de	Curva	Elastica,
Isochrona	Paracentrica,	&	Velaria,	hinc	inde	memorata,	&	paratim	controversa	legundur;	ubi	de	Linea	mediarum	directionum,	alliisque	novis",	Acta	Eruditorum.	Cited	in	Hairer,	Nørsett	&	Wanner	(1993).	Hairer,	Ernst;	Nørsett,	Syvert	Paul;	Wanner,	Gerhard	(1993),	Solving	ordinary	differential	equations	I:	Nonstiff	problems,	Berlin,	New	York:
Springer-Verlag,	ISBN	978-3-540-56670-0.	Index	of	differential	equations	Retrieved	from	"	In	mathematics,	the	binomial	differential	equation	is	an	ordinary	differential	equation	of	the	form	(	y	′	)	m	=	f	(	x	,	y	)	,	{\displaystyle	\left(y'\right)^{m}=f(x,y),}	where	m	{\displaystyle	m}	is	a	natural	number	and	f	(	x	,	y	)	{\displaystyle	f(x,y)}	is	a	polynomial
that	is	analytic	in	both	variables.[1][2]	Let	P	(	x	,	y	)	=	(	x	+	y	)	k	{\displaystyle	P(x,y)=(x+y)^{k}}	be	a	polynomial	of	two	variables	of	order	k	{\displaystyle	k}	,	where	k	{\displaystyle	k}	is	a	natural	number.	By	the	binomial	formula,	P	(	x	,	y	)	=	∑	j	=	0	k	(	k	j	)	x	j	y	k	−	j	{\displaystyle	P(x,y)=\sum	\limits	_{j=0}^{k}{{\binom	{k}{j}}x^{j}y^{k-j}}}	.
[relevant?]	The	binomial	differential	equation	becomes	(	y	′	)	m	=	(	x	+	y	)	k	{\textstyle	(y')^{m}=(x+y)^{k}}	.[clarification	needed]	Substituting	v	=	x	+	y	{\displaystyle	v=x+y}	and	its	derivative	v	′	=	1	+	y	′	{\displaystyle	v'=1+y'}	gives	(	v	′	−	1	)	m	=	v	k	{\textstyle	(v'-1)^{m}=v^{k}}	,	which	can	be	written	d	v	d	x	=	1	+	v	k	m	{\textstyle	{\tfrac
{dv}{dx}}=1+v^{\tfrac	{k}{m}}}	,	which	is	a	separable	ordinary	differential	equation.	Solving	gives	d	v	d	x	=	1	+	v	k	m	⇒	d	v	1	+	v	k	m	=	d	x	⇒	∫	d	v	1	+	v	k	m	=	x	+	C	{\displaystyle	{\begin{array}{lrl}&{\frac	{dv}{dx}}&=1+v^{\tfrac	{k}{m}}\\\Rightarrow	&{\frac	{dv}{1+v^{\tfrac	{k}{m}}}}&=dx\\\Rightarrow	&\int	{\frac	{dv}
{1+v^{\tfrac	{k}{m}}}}&=x+C\end{array}}}	If	m	=	k	{\displaystyle	m=k}	,	this	gives	the	differential	equation	v	′	−	1	=	v	{\displaystyle	v'-1=v}	and	the	solution	is	y	(	x	)	=	C	e	x	−	x	−	1	{\displaystyle	y\left(x\right)=Ce^{x}-x-1}	,	where	C	{\displaystyle	C}	is	a	constant.	If	m	|	k	{\displaystyle	m|k}	(that	is,	m	{\displaystyle	m}	is	a	divisor	of	k
{\displaystyle	k}	),	then	the	solution	has	the	form	∫	d	v	1	+	v	n	=	x	+	C	{\textstyle	\int	{\frac	{dv}{1+v^{n}}}=x+C}	.	In	the	tables	book	Gradshteyn	and	Ryzhik,	this	form	decomposes	as:	∫	d	v	1	+	v	n	=	{	−	2	n	∑	i	=	0	n	2	−	1	P	i	cos	⁡	(	2	i	+	1	n	π	)	+	2	n	∑	i	=	0	n	2	−	1	Q	i	sin	⁡	(	2	i	+	1	n	π	)	,	n	:	even	integer	1	n	ln	⁡	(	1	+	v	)	−	2	n	∑	i	=	0	n	−	3	2	P	i
cos	⁡	(	2	i	+	1	n	π	)	+	2	n	∑	i	=	0	n	−	3	2	Q	i	sin	⁡	(	2	i	+	1	n	π	)	,	n	:	odd	integer	{\displaystyle	\int	{\frac	{dv}{1+v^{n}}}=\left\{{\begin{array}{ll}-{\frac	{2}{n}}\sum	\limits	_{i=0}^{{\textstyle	{n	\over	2}}-1}{P_{i}\cos	\left({{\frac	{2i+1}{n}}\pi	}\right)}+{\frac	{2}{n}}\sum	\limits	_{i=0}^{{\tfrac	{n}{2}}-1}{Q_{i}\sin	\left({{\frac	{2i+1}
{n}}\pi	}\right)},&n:{\text{even	integer}}\\\\{\frac	{1}{n}}\ln	\left({1+v}\right)-{\frac	{2}{n}}\sum	\limits	_{i=0}^{\textstyle	{{n-3}	\over	2}}{P_{i}\cos	\left({{\frac	{2i+1}{n}}\pi	}\right)}+{\frac	{2}{n}}\sum	\limits	_{i=0}^{\tfrac	{n-3}{2}}{Q_{i}\sin	\left({{\frac	{2i+1}{n}}\pi	}\right)},&n:{\text{odd	integer}}\\\end{array}}\right.}	where
P	i	=	1	2	ln	⁡	(	v	2	−	2	v	cos	⁡	(	2	i	+	1	n	π	)	+	1	)	Q	i	=	arctan	⁡	(	v	−	cos	⁡	(	2	i	+	1	n	π	)	sin	⁡	(	2	i	+	1	n	π	)	)	{\displaystyle	{\begin{aligned}P_{i}&={\frac	{1}{2}}\ln	\left({v^{2}-2v\cos	\left({{\frac	{2i+1}{n}}\pi	}\right)+1}\right)\\Q_{i}&=\arctan	\left({\frac	{v-\cos	\left({{\textstyle	{{2i+1}	\over	n}}\pi	}\right)}{\sin	\left({{\textstyle	{{2i+1}	\over
n}}\pi	}\right)}}\right)\end{aligned}}}	Examples	of	differential	equations	^	Hille,	Einar	(1894).	Lectures	on	ordinary	differential	equations.	Addison-Wesley	Publishing	Company.	p.	675.	ISBN	978-0201530834.	{{cite	book}}:	ISBN	/	Date	incompatibility	(help)	^	Zwillinger,	Daniel	(1998).	Handbook	of	differential	equations	(3rd	ed.).	San	Diego,	Calif:
Academic	Press.	p.	180.	ISBN	978-0-12-784396-4.	Retrieved	from	"


