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Conjecture	in	math

Proposition	in	mathematics	that	is	unproven	For	text	reconstruction,	see	Conjecture	(textual	criticism).	The	real	part	(red)	and	imaginary	part	(blue)	of	the	Riemann	zeta	function	along	the	critical	line	Re(s)	=	1/2.	The	first	non-trivial	zeros	can	be	seen	at	Im(s)	=	±14.135,	±21.022	and	±25.011.	The	Riemann	hypothesis,	a	famous	conjecture,	says	that
all	non-trivial	zeros	of	the	zeta	function	lie	along	the	critical	line.	In	mathematics,	a	conjecture	is	a	conclusion	or	a	proposition	that	is	proffered	on	a	tentative	basis	without	proof.[1][2][3]	Some	conjectures,	such	as	the	Riemann	hypothesis	or	Fermat's	conjecture	(now	a	theorem,	proven	in	1995	by	Andrew	Wiles),	have	shaped	much	of	mathematical
history	as	new	areas	of	mathematics	are	developed	in	order	to	prove	them.[4]	Formal	mathematics	is	based	on	provable	truth.	In	mathematics,	any	number	of	cases	supporting	a	universally	quantified	conjecture,	no	matter	how	large,	is	insufficient	for	establishing	the	conjecture's	veracity,	since	a	single	counterexample	could	immediately	bring	down
the	conjecture.	Mathematical	journals	sometimes	publish	the	minor	results	of	research	teams	having	extended	the	search	for	a	counterexample	farther	than	previously	done.	For	instance,	the	Collatz	conjecture,	which	concerns	whether	or	not	certain	sequences	of	integers	terminate,	has	been	tested	for	all	integers	up	to	1.2	×	1012	(1.2	trillion).
However,	the	failure	to	find	a	counterexample	after	extensive	search	does	not	constitute	a	proof	that	the	conjecture	is	true—because	the	conjecture	might	be	false	but	with	a	very	large	minimal	counterexample.	Nevertheless,	mathematicians	often	regard	a	conjecture	as	strongly	supported	by	evidence	even	though	not	yet	proved.	That	evidence	may
be	of	various	kinds,	such	as	verification	of	consequences	of	it	or	strong	interconnections	with	known	results.[5]	A	conjecture	is	considered	proven	only	when	it	has	been	shown	that	it	is	logically	impossible	for	it	to	be	false.	There	are	various	methods	of	doing	so;	see	methods	of	mathematical	proof	for	more	details.	One	method	of	proof,	applicable
when	there	are	only	a	finite	number	of	cases	that	could	lead	to	counterexamples,	is	known	as	"brute	force":	in	this	approach,	all	possible	cases	are	considered	and	shown	not	to	give	counterexamples.	In	some	occasions,	the	number	of	cases	is	quite	large,	in	which	case	a	brute-force	proof	may	require	as	a	practical	matter	the	use	of	a	computer
algorithm	to	check	all	the	cases.	For	example,	the	validity	of	the	1976	and	1997	brute-force	proofs	of	the	four	color	theorem	by	computer	was	initially	doubted,	but	was	eventually	confirmed	in	2005	by	theorem-proving	software.	When	a	conjecture	has	been	proven,	it	is	no	longer	a	conjecture	but	a	theorem.	Many	important	theorems	were	once
conjectures,	such	as	the	Geometrization	theorem	(which	resolved	the	Poincaré	conjecture),	Fermat's	Last	Theorem,	and	others.	Conjectures	disproven	through	counterexample	are	sometimes	referred	to	as	false	conjectures	(cf.	the	Pólya	conjecture	and	Euler's	sum	of	powers	conjecture).	In	the	case	of	the	latter,	the	first	counterexample	found	for	the
n=4	case	involved	numbers	in	the	millions,	although	it	has	been	subsequently	found	that	the	minimal	counterexample	is	actually	smaller.	Not	every	conjecture	ends	up	being	proven	true	or	false.	The	continuum	hypothesis,	which	tries	to	ascertain	the	relative	cardinality	of	certain	infinite	sets,	was	eventually	shown	to	be	independent	from	the
generally	accepted	set	of	Zermelo–Fraenkel	axioms	of	set	theory.	It	is	therefore	possible	to	adopt	this	statement,	or	its	negation,	as	a	new	axiom	in	a	consistent	manner	(much	as	Euclid's	parallel	postulate	can	be	taken	either	as	true	or	false	in	an	axiomatic	system	for	geometry).	In	this	case,	if	a	proof	uses	this	statement,	researchers	will	often	look	for
a	new	proof	that	does	not	require	the	hypothesis	(in	the	same	way	that	it	is	desirable	that	statements	in	Euclidean	geometry	be	proved	using	only	the	axioms	of	neutral	geometry,	i.e.	without	the	parallel	postulate).	The	one	major	exception	to	this	in	practice	is	the	axiom	of	choice,	as	the	majority	of	researchers	usually	do	not	worry	whether	a	result
requires	it—unless	they	are	studying	this	axiom	in	particular.	Sometimes,	a	conjecture	is	called	a	hypothesis	when	it	is	used	frequently	and	repeatedly	as	an	assumption	in	proofs	of	other	results.	For	example,	the	Riemann	hypothesis	is	a	conjecture	from	number	theory	that	—	amongst	other	things	—	makes	predictions	about	the	distribution	of	prime
numbers.	Few	number	theorists	doubt	that	the	Riemann	hypothesis	is	true.	In	fact,	in	anticipation	of	its	eventual	proof,	some	have	even	proceeded	to	develop	further	proofs	which	are	contingent	on	the	truth	of	this	conjecture.	These	are	called	conditional	proofs:	the	conjectures	assumed	appear	in	the	hypotheses	of	the	theorem,	for	the	time	being.
These	"proofs",	however,	would	fall	apart	if	it	turned	out	that	the	hypothesis	was	false,	so	there	is	considerable	interest	in	verifying	the	truth	or	falsity	of	conjectures	of	this	type.	Main	article:	Fermat's	Last	Theorem	In	number	theory,	Fermat's	Last	Theorem	(sometimes	called	Fermat's	conjecture,	especially	in	older	texts)	states	that	no	three	positive
integers	a	{\displaystyle	a}	,	b	{\displaystyle	b}	,	and	c	{\displaystyle	c}	can	satisfy	the	equation	a	n	+	b	n	=	c	n	{\displaystyle	a^{n}+b^{n}=c^{n}}	for	any	integer	value	of	n	{\displaystyle	n}	greater	than	two.	This	theorem	was	first	conjectured	by	Pierre	de	Fermat	in	1637	in	the	margin	of	a	copy	of	Arithmetica,	where	he	claimed	that	he	had	a
proof	that	was	too	large	to	fit	in	the	margin.[6]	The	first	successful	proof	was	released	in	1994	by	Andrew	Wiles,	and	formally	published	in	1995,	after	358	years	of	effort	by	mathematicians.	The	unsolved	problem	stimulated	the	development	of	algebraic	number	theory	in	the	19th	century,	and	the	proof	of	the	modularity	theorem	in	the	20th	century.	It
is	among	the	most	notable	theorems	in	the	history	of	mathematics,	and	prior	to	its	proof	it	was	in	the	Guinness	Book	of	World	Records	for	"most	difficult	mathematical	problems".[7]	Main	article:	Four	color	theorem	A	four-coloring	of	a	map	of	the	states	of	the	United	States	(ignoring	lakes).	In	mathematics,	the	four	color	theorem,	or	the	four	color	map
theorem,	states	that	given	any	separation	of	a	plane	into	contiguous	regions,	producing	a	figure	called	a	map,	no	more	than	four	colors	are	required	to	color	the	regions	of	the	map—so	that	no	two	adjacent	regions	have	the	same	color.	Two	regions	are	called	adjacent	if	they	share	a	common	boundary	that	is	not	a	corner,	where	corners	are	the	points
shared	by	three	or	more	regions.[8]	For	example,	in	the	map	of	the	United	States	of	America,	Utah	and	Arizona	are	adjacent,	but	Utah	and	New	Mexico,	which	only	share	a	point	that	also	belongs	to	Arizona	and	Colorado,	are	not.	Möbius	mentioned	the	problem	in	his	lectures	as	early	as	1840.[9]	The	conjecture	was	first	proposed	on	October	23,
1852[10]	when	Francis	Guthrie,	while	trying	to	color	the	map	of	counties	of	England,	noticed	that	only	four	different	colors	were	needed.	The	five	color	theorem,	which	has	a	short	elementary	proof,	states	that	five	colors	suffice	to	color	a	map	and	was	proven	in	the	late	19th	century;[11]	however,	proving	that	four	colors	suffice	turned	out	to	be
significantly	harder.	A	number	of	false	proofs	and	false	counterexamples	have	appeared	since	the	first	statement	of	the	four	color	theorem	in	1852.	The	four	color	theorem	was	ultimately	proven	in	1976	by	Kenneth	Appel	and	Wolfgang	Haken.	It	was	the	first	major	theorem	to	be	proved	using	a	computer.	Appel	and	Haken's	approach	started	by
showing	that	there	is	a	particular	set	of	1,936	maps,	each	of	which	cannot	be	part	of	a	smallest-sized	counterexample	to	the	four	color	theorem	(i.e.,	if	they	did	appear,	one	could	make	a	smaller	counter-example).	Appel	and	Haken	used	a	special-purpose	computer	program	to	confirm	that	each	of	these	maps	had	this	property.	Additionally,	any	map
that	could	potentially	be	a	counterexample	must	have	a	portion	that	looks	like	one	of	these	1,936	maps.	Showing	this	with	hundreds	of	pages	of	hand	analysis,	Appel	and	Haken	concluded	that	no	smallest	counterexample	exists	because	any	must	contain,	yet	do	not	contain,	one	of	these	1,936	maps.	This	contradiction	means	there	are	no
counterexamples	at	all	and	that	the	theorem	is	therefore	true.	Initially,	their	proof	was	not	accepted	by	mathematicians	at	all	because	the	computer-assisted	proof	was	infeasible	for	a	human	to	check	by	hand.[12]	However,	the	proof	has	since	then	gained	wider	acceptance,	although	doubts	still	remain.[13]	Main	article:	Hauptvermutung	The
Hauptvermutung	(German	for	main	conjecture)	of	geometric	topology	is	the	conjecture	that	any	two	triangulations	of	a	triangulable	space	have	a	common	refinement,	a	single	triangulation	that	is	a	subdivision	of	both	of	them.	It	was	originally	formulated	in	1908,	by	Steinitz	and	Tietze.[14]	This	conjecture	is	now	known	to	be	false.	The	non-manifold
version	was	disproved	by	John	Milnor[15]	in	1961	using	Reidemeister	torsion.	The	manifold	version	is	true	in	dimensions	m	≤	3.	The	cases	m	=	2	and	3	were	proved	by	Tibor	Radó	and	Edwin	E.	Moise[16]	in	the	1920s	and	1950s,	respectively.	Main	article:	Weil	conjectures	In	mathematics,	the	Weil	conjectures	were	some	highly	influential	proposals	by
André	Weil	(1949)	on	the	generating	functions	(known	as	local	zeta-functions)	derived	from	counting	the	number	of	points	on	algebraic	varieties	over	finite	fields.	A	variety	V	over	a	finite	field	with	q	elements	has	a	finite	number	of	rational	points,	as	well	as	points	over	every	finite	field	with	qk	elements	containing	that	field.	The	generating	function
has	coefficients	derived	from	the	numbers	Nk	of	points	over	the	(essentially	unique)	field	with	qk	elements.	Weil	conjectured	that	such	zeta-functions	should	be	rational	functions,	should	satisfy	a	form	of	functional	equation,	and	should	have	their	zeroes	in	restricted	places.	The	last	two	parts	were	quite	consciously	modeled	on	the	Riemann	zeta
function	and	Riemann	hypothesis.	The	rationality	was	proved	by	Dwork	(1960),	the	functional	equation	by	Grothendieck	(1965),	and	the	analogue	of	the	Riemann	hypothesis	was	proved	by	Deligne	(1974).	Main	article:	Poincaré	conjecture	In	mathematics,	the	Poincaré	conjecture	is	a	theorem	about	the	characterization	of	the	3-sphere,	which	is	the
hypersphere	that	bounds	the	unit	ball	in	four-dimensional	space.	The	conjecture	states	that:	Every	simply	connected,	closed	3-manifold	is	homeomorphic	to	the	3-sphere.	An	equivalent	form	of	the	conjecture	involves	a	coarser	form	of	equivalence	than	homeomorphism	called	homotopy	equivalence:	if	a	3-manifold	is	homotopy	equivalent	to	the	3-
sphere,	then	it	is	necessarily	homeomorphic	to	it.	Originally	conjectured	by	Henri	Poincaré	in	1904,	the	theorem	concerns	a	space	that	locally	looks	like	ordinary	three-dimensional	space	but	is	connected,	finite	in	size,	and	lacks	any	boundary	(a	closed	3-manifold).	The	Poincaré	conjecture	claims	that	if	such	a	space	has	the	additional	property	that
each	loop	in	the	space	can	be	continuously	tightened	to	a	point,	then	it	is	necessarily	a	three-dimensional	sphere.	An	analogous	result	has	been	known	in	higher	dimensions	for	some	time.	After	nearly	a	century	of	effort	by	mathematicians,	Grigori	Perelman	presented	a	proof	of	the	conjecture	in	three	papers	made	available	in	2002	and	2003	on	arXiv.
The	proof	followed	on	from	the	program	of	Richard	S.	Hamilton	to	use	the	Ricci	flow	to	attempt	to	solve	the	problem.	Hamilton	later	introduced	a	modification	of	the	standard	Ricci	flow,	called	Ricci	flow	with	surgery	to	systematically	excise	singular	regions	as	they	develop,	in	a	controlled	way,	but	was	unable	to	prove	this	method	"converged"	in	three
dimensions.[17]	Perelman	completed	this	portion	of	the	proof.	Several	teams	of	mathematicians	have	verified	that	Perelman's	proof	is	correct.	The	Poincaré	conjecture,	before	being	proven,	was	one	of	the	most	important	open	questions	in	topology.	Main	article:	Riemann	hypothesis	In	mathematics,	the	Riemann	hypothesis,	proposed	by	Bernhard
Riemann	(1859),	is	a	conjecture	that	the	non-trivial	zeros	of	the	Riemann	zeta	function	all	have	real	part	1/2.	The	name	is	also	used	for	some	closely	related	analogues,	such	as	the	Riemann	hypothesis	for	curves	over	finite	fields.	The	Riemann	hypothesis	implies	results	about	the	distribution	of	prime	numbers.	Along	with	suitable	generalizations,	some
mathematicians	consider	it	the	most	important	unresolved	problem	in	pure	mathematics.[18]	The	Riemann	hypothesis,	along	with	the	Goldbach	conjecture,	is	part	of	Hilbert's	eighth	problem	in	David	Hilbert's	list	of	23	unsolved	problems;	it	is	also	one	of	the	Clay	Mathematics	Institute	Millennium	Prize	Problems.	Main	article:	P	versus	NP	problem
The	P	versus	NP	problem	is	a	major	unsolved	problem	in	computer	science.	Informally,	it	asks	whether	every	problem	whose	solution	can	be	quickly	verified	by	a	computer	can	also	be	quickly	solved	by	a	computer;	it	is	widely	conjectured	that	the	answer	is	no.	It	was	essentially	first	mentioned	in	a	1956	letter	written	by	Kurt	Gödel	to	John	von
Neumann.	Gödel	asked	whether	a	certain	NP-complete	problem	could	be	solved	in	quadratic	or	linear	time.[19]	The	precise	statement	of	the	P=NP	problem	was	introduced	in	1971	by	Stephen	Cook	in	his	seminal	paper	"The	complexity	of	theorem	proving	procedures"[20]	and	is	considered	by	many	to	be	the	most	important	open	problem	in	the	field.
[21]	It	is	one	of	the	seven	Millennium	Prize	Problems	selected	by	the	Clay	Mathematics	Institute	to	carry	a	US$1,000,000	prize	for	the	first	correct	solution.	Goldbach's	conjecture	The	twin	prime	conjecture	The	Collatz	conjecture	The	Manin	conjecture	The	Maldacena	conjecture	The	Euler	conjecture,	proposed	by	Euler	in	the	18th	century	but	for
which	counterexamples	for	a	number	of	exponents	(starting	with	n=4)	were	found	beginning	in	the	mid	20th	century	The	Hardy-Littlewood	conjectures	are	a	pair	of	conjectures	concerning	the	distribution	of	prime	numbers,	the	first	of	which	expands	upon	the	aforementioned	twin	prime	conjecture.	Neither	one	has	either	been	proven	or	disproven,
but	it	has	been	proven	that	both	cannot	simultaneously	be	true	(i.e.,	at	least	one	must	be	false).	It	has	not	been	proven	which	one	is	false,	but	it	is	widely	believed	that	the	first	conjecture	is	true	and	the	second	one	is	false.[22]	The	Langlands	program[23]	is	a	far-reaching	web	of	these	ideas	of	'unifying	conjectures'	that	link	different	subfields	of
mathematics	(e.g.	between	number	theory	and	representation	theory	of	Lie	groups).	Some	of	these	conjectures	have	since	been	proved.	Karl	Popper	pioneered	the	use	of	the	term	"conjecture"	in	scientific	philosophy.[24]	Conjecture	is	related	to	hypothesis,	which	in	science	refers	to	a	testable	conjecture.	Bold	hypothesis	Futures	studies	Hypotheticals
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hypersphere's	parallels	(red),	meridians	(blue)	and	hypermeridians	(green).	Because	this	projection	is	conformal,	the	curves	intersect	each	other	orthogonally	(in	the	yellow	points)	as	in	4D.	All	curves	are	circles:	the	curves	that	intersect	⟨0,0,0,1⟩	have	infinite	radius	(=	straight	line).	In	this	picture,	the	whole	3D	space	maps	the	surface	of	the
hypersphere,	whereas	in	the	next	picture	the	3D	space	contained	the	shadow	of	the	bulk	hypersphere.	Direct	projection	of	3-sphere	into	3D	space	and	covered	with	surface	grid,	showing	structure	as	stack	of	3D	spheres	(2-spheres)	In	mathematics,	a	hypersphere	or	3-sphere	is	a	4-dimensional	analogue	of	a	sphere,	and	is	the	3-dimensional	n-sphere.
In	4-dimensional	Euclidean	space,	it	is	the	set	of	points	equidistant	from	a	fixed	central	point.	The	interior	of	a	3-sphere	is	a	4-ball.	It	is	called	a	3-sphere	because	topologically,	the	surface	itself	is	3-dimensional,	even	though	it	is	curved	into	the	4th	dimension.	For	example,	when	traveling	on	a	3-sphere,	you	can	go	north	and	south,	east	and	west,	or
along	a	3rd	set	of	cardinal	directions.	This	means	that	a	3-sphere	is	an	example	of	a	3-manifold.	In	coordinates,	a	3-sphere	with	center	(C0,	C1,	C2,	C3)	and	radius	r	is	the	set	of	all	points	(x0,	x1,	x2,	x3)	in	real,	4-dimensional	space	(R4)	such	that	∑	i	=	0	3	(	x	i	−	C	i	)	2	=	(	x	0	−	C	0	)	2	+	(	x	1	−	C	1	)	2	+	(	x	2	−	C	2	)	2	+	(	x	3	−	C	3	)	2	=	r	2	.
{\displaystyle	\sum	_{i=0}^{3}(x_{i}-C_{i})^{2}=(x_{0}-C_{0})^{2}+(x_{1}-C_{1})^{2}+(x_{2}-C_{2})^{2}+(x_{3}-C_{3})^{2}=r^{2}.}	The	3-sphere	centered	at	the	origin	with	radius	1	is	called	the	unit	3-sphere	and	is	usually	denoted	S3:	S	3	=	{	(	x	0	,	x	1	,	x	2	,	x	3	)	∈	R	4	:	x	0	2	+	x	1	2	+	x	2	2	+	x	3	2	=	1	}	.	{\displaystyle	S^{3}=\left\
{(x_{0},x_{1},x_{2},x_{3})\in	\mathbb	{R}	^{4}:x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\}.}	It	is	often	convenient	to	regard	R4	as	the	space	with	2	complex	dimensions	(C2)	or	the	quaternions	(H).	The	unit	3-sphere	is	then	given	by	S	3	=	{	(	z	1	,	z	2	)	∈	C	2	:	|	z	1	|	2	+	|	z	2	|	2	=	1	}	{\displaystyle	S^{3}=\left\{(z_{1},z_{2})\in
\mathbb	{C}	^{2}:|z_{1}|^{2}+|z_{2}|^{2}=1\right\}}	or	S	3	=	{	q	∈	H	:	‖	q	‖	=	1	}	.	{\displaystyle	S^{3}=\left\{q\in	\mathbb	{H}	:\|q\|=1\right\}.}	This	description	as	the	quaternions	of	norm	one	identifies	the	3-sphere	with	the	versors	in	the	quaternion	division	ring.	Just	as	the	unit	circle	is	important	for	planar	polar	coordinates,	so	the	3-sphere
is	important	in	the	polar	view	of	4-space	involved	in	quaternion	multiplication.	See	polar	decomposition	of	a	quaternion	for	details	of	this	development	of	the	three-sphere.	This	view	of	the	3-sphere	is	the	basis	for	the	study	of	elliptic	space	as	developed	by	Georges	Lemaître.[1]	The	3-dimensional	surface	volume	of	a	3-sphere	of	radius	r	is	S	V	=	2	π	2	r
3	{\displaystyle	SV=2\pi	^{2}r^{3}\,}	while	the	4-dimensional	hypervolume	(the	content	of	the	4-dimensional	region,	or	ball,	bounded	by	the	3-sphere)	is	H	=	1	2	π	2	r	4	.	{\displaystyle	H={\frac	{1}{2}}\pi	^{2}r^{4}.}	Every	non-empty	intersection	of	a	3-sphere	with	a	three-dimensional	hyperplane	is	a	2-sphere	(unless	the	hyperplane	is	tangent
to	the	3-sphere,	in	which	case	the	intersection	is	a	single	point).	As	a	3-sphere	moves	through	a	given	three-dimensional	hyperplane,	the	intersection	starts	out	as	a	point,	then	becomes	a	growing	2-sphere	that	reaches	its	maximal	size	when	the	hyperplane	cuts	right	through	the	"equator"	of	the	3-sphere.	Then	the	2-sphere	shrinks	again	down	to	a
single	point	as	the	3-sphere	leaves	the	hyperplane.	In	a	given	three-dimensional	hyperplane,	a	3-sphere	can	rotate	about	an	"equatorial	plane"	(analogous	to	a	2-sphere	rotating	about	a	central	axis),	in	which	case	it	appears	to	be	a	2-sphere	whose	size	is	constant.	A	3-sphere	is	a	compact,	connected,	3-dimensional	manifold	without	boundary.	It	is	also
simply	connected.	What	this	means,	in	the	broad	sense,	is	that	any	loop,	or	circular	path,	on	the	3-sphere	can	be	continuously	shrunk	to	a	point	without	leaving	the	3-sphere.	The	Poincaré	conjecture,	proved	in	2003	by	Grigori	Perelman,	provides	that	the	3-sphere	is	the	only	three-dimensional	manifold	(up	to	homeomorphism)	with	these	properties.
The	3-sphere	is	homeomorphic	to	the	one-point	compactification	of	R3.	In	general,	any	topological	space	that	is	homeomorphic	to	the	3-sphere	is	called	a	topological	3-sphere.	The	homology	groups	of	the	3-sphere	are	as	follows:	H0(S3,	Z)	and	H3(S3,	Z)	are	both	infinite	cyclic,	while	Hi(S3,	Z)	=	{}	for	all	other	indices	i.	Any	topological	space	with
these	homology	groups	is	known	as	a	homology	3-sphere.	Initially	Poincaré	conjectured	that	all	homology	3-spheres	are	homeomorphic	to	S3,	but	then	he	himself	constructed	a	non-homeomorphic	one,	now	known	as	the	Poincaré	homology	sphere.	Infinitely	many	homology	spheres	are	now	known	to	exist.	For	example,	a	Dehn	filling	with	slope	1/n	on
any	knot	in	the	3-sphere	gives	a	homology	sphere;	typically	these	are	not	homeomorphic	to	the	3-sphere.	As	to	the	homotopy	groups,	we	have	π1(S3)	=	π2(S3)	=	{}	and	π3(S3)	is	infinite	cyclic.	The	higher-homotopy	groups	(k	≥	4)	are	all	finite	abelian	but	otherwise	follow	no	discernible	pattern.	For	more	discussion	see	homotopy	groups	of	spheres.
Homotopy	groups	of	S3	k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	πk(S3)	0	0	0	Z	Z2	Z2	Z12	Z2	Z2	Z3	Z15	Z2	Z2⊕Z2	Z12⊕Z2	Z84⊕Z2⊕Z2	Z2⊕Z2	Z6	The	3-sphere	is	naturally	a	smooth	manifold,	in	fact,	a	closed	embedded	submanifold	of	R4.	The	Euclidean	metric	on	R4	induces	a	metric	on	the	3-sphere	giving	it	the	structure	of	a	Riemannian	manifold.
As	with	all	spheres,	the	3-sphere	has	constant	positive	sectional	curvature	equal	to	1/r2	where	r	is	the	radius.	Much	of	the	interesting	geometry	of	the	3-sphere	stems	from	the	fact	that	the	3-sphere	has	a	natural	Lie	group	structure	given	by	quaternion	multiplication	(see	the	section	below	on	group	structure).	The	only	other	spheres	with	such	a
structure	are	the	0-sphere	and	the	1-sphere	(see	circle	group).	Unlike	the	2-sphere,	the	3-sphere	admits	nonvanishing	vector	fields	(sections	of	its	tangent	bundle).	One	can	even	find	three	linearly	independent	and	nonvanishing	vector	fields.	These	may	be	taken	to	be	any	left-invariant	vector	fields	forming	a	basis	for	the	Lie	algebra	of	the	3-sphere.
This	implies	that	the	3-sphere	is	parallelizable.	It	follows	that	the	tangent	bundle	of	the	3-sphere	is	trivial.	For	a	general	discussion	of	the	number	of	linear	independent	vector	fields	on	a	n-sphere,	see	the	article	vector	fields	on	spheres.	There	is	an	interesting	action	of	the	circle	group	T	on	S3	giving	the	3-sphere	the	structure	of	a	principal	circle
bundle	known	as	the	Hopf	bundle.	If	one	thinks	of	S3	as	a	subset	of	C2,	the	action	is	given	by	(	z	1	,	z	2	)	⋅	λ	=	(	z	1	λ	,	z	2	λ	)	∀	λ	∈	T	{\displaystyle	(z_{1},z_{2})\cdot	\lambda	=(z_{1}\lambda	,z_{2}\lambda	)\quad	\forall	\lambda	\in	\mathbb	{T}	}	.	The	orbit	space	of	this	action	is	homeomorphic	to	the	two-sphere	S2.	Since	S3	is	not	homeomorphic	to
S2	×	S1,	the	Hopf	bundle	is	nontrivial.	There	are	several	well-known	constructions	of	the	three-sphere.	Here	we	describe	gluing	a	pair	of	three-balls	and	then	the	one-point	compactification.	A	3-sphere	can	be	constructed	topologically	by	"gluing"	together	the	boundaries	of	a	pair	of	3-balls.	The	boundary	of	a	3-ball	is	a	2-sphere,	and	these	two	2-
spheres	are	to	be	identified.	That	is,	imagine	a	pair	of	3-balls	of	the	same	size,	then	superpose	them	so	that	their	2-spherical	boundaries	match,	and	let	matching	pairs	of	points	on	the	pair	of	2-spheres	be	identically	equivalent	to	each	other.	In	analogy	with	the	case	of	the	2-sphere	(see	below),	the	gluing	surface	is	called	an	equatorial	sphere.	Note
that	the	interiors	of	the	3-balls	are	not	glued	to	each	other.	One	way	to	think	of	the	fourth	dimension	is	as	a	continuous	real-valued	function	of	the	3-dimensional	coordinates	of	the	3-ball,	perhaps	considered	to	be	"temperature".	We	take	the	"temperature"	to	be	zero	along	the	gluing	2-sphere	and	let	one	of	the	3-balls	be	"hot"	and	let	the	other	3-ball	be
"cold".	The	"hot"	3-ball	could	be	thought	of	as	the	"upper	hemisphere"	and	the	"cold"	3-ball	could	be	thought	of	as	the	"lower	hemisphere".	The	temperature	is	highest/lowest	at	the	centers	of	the	two	3-balls.	This	construction	is	analogous	to	a	construction	of	a	2-sphere,	performed	by	gluing	the	boundaries	of	a	pair	of	disks.	A	disk	is	a	2-ball,	and	the
boundary	of	a	disk	is	a	circle	(a	1-sphere).	Let	a	pair	of	disks	be	of	the	same	diameter.	Superpose	them	and	glue	corresponding	points	on	their	boundaries.	Again	one	may	think	of	the	third	dimension	as	temperature.	Likewise,	we	may	inflate	the	2-sphere,	moving	the	pair	of	disks	to	become	the	northern	and	southern	hemispheres.	After	removing	a
single	point	from	the	2-sphere,	what	remains	is	homeomorphic	to	the	Euclidean	plane.	In	the	same	way,	removing	a	single	point	from	the	3-sphere	yields	three-dimensional	space.	An	extremely	useful	way	to	see	this	is	via	stereographic	projection.	We	first	describe	the	lower-dimensional	version.	Rest	the	south	pole	of	a	unit	2-sphere	on	the	xy-plane	in
three-space.	We	map	a	point	P	of	the	sphere	(minus	the	north	pole	N)	to	the	plane	by	sending	P	to	the	intersection	of	the	line	NP	with	the	plane.	Stereographic	projection	of	a	3-sphere	(again	removing	the	north	pole)	maps	to	three-space	in	the	same	manner.	(Notice	that,	since	stereographic	projection	is	conformal,	round	spheres	are	sent	to	round
spheres	or	to	planes.)	A	somewhat	different	way	to	think	of	the	one-point	compactification	is	via	the	exponential	map.	Returning	to	our	picture	of	the	unit	two-sphere	sitting	on	the	Euclidean	plane:	Consider	a	geodesic	in	the	plane,	based	at	the	origin,	and	map	this	to	a	geodesic	in	the	two-sphere	of	the	same	length,	based	at	the	south	pole.	Under	this
map	all	points	of	the	circle	of	radius	π	are	sent	to	the	north	pole.	Since	the	open	unit	disk	is	homeomorphic	to	the	Euclidean	plane,	this	is	again	a	one-point	compactification.	The	exponential	map	for	3-sphere	is	similarly	constructed;	it	may	also	be	discussed	using	the	fact	that	the	3-sphere	is	the	Lie	group	of	unit	quaternions.	The	four	Euclidean
coordinates	for	S3	are	redundant	since	they	are	subject	to	the	condition	that	x02	+	x12	+	x22	+	x32	=	1.	As	a	3-dimensional	manifold	one	should	be	able	to	parameterize	S3	by	three	coordinates,	just	as	one	can	parameterize	the	2-sphere	using	two	coordinates	(such	as	latitude	and	longitude).	Due	to	the	nontrivial	topology	of	S3	it	is	impossible	to	find
a	single	set	of	coordinates	that	cover	the	entire	space.	Just	as	on	the	2-sphere,	one	must	use	at	least	two	coordinate	charts.	Some	different	choices	of	coordinates	are	given	below.	It	is	convenient	to	have	some	sort	of	hyperspherical	coordinates	on	S3	in	analogy	to	the	usual	spherical	coordinates	on	S2.	One	such	choice	—	by	no	means	unique	—	is	to
use	(ψ,	θ,	φ),	where	x	0	=	r	cos		ψ	x	1	=	r	sin		ψ	cos		θ	x	2	=	r	sin		ψ	sin		θ	cos		φ	x	3	=	r	sin		ψ	sin		θ	sin		φ	{\displaystyle	{\begin{aligned}x_{0}&=r\cos	\psi	\\x_{1}&=r\sin	\psi	\cos	\theta	\\x_{2}&=r\sin	\psi	\sin	\theta	\cos	\varphi	\\x_{3}&=r\sin	\psi	\sin	\theta	\sin	\varphi	\end{aligned}}}	where	ψ	and	θ	run	over	the	range	0	to	π,	and	φ	runs	over	0	to
2π.	Note	that,	for	any	fixed	value	of	ψ,	θ	and	φ	parameterize	a	2-sphere	of	radius	r	sin		ψ	{\displaystyle	r\sin	\psi	}	,	except	for	the	degenerate	cases,	when	ψ	equals	0	or	π,	in	which	case	they	describe	a	point.	The	round	metric	on	the	3-sphere	in	these	coordinates	is	given	by[2]	d	s	2	=	r	2	[	d	ψ	2	+	sin	2		ψ	(	d	θ	2	+	sin	2		θ	d	φ	2	)	]	{\displaystyle
ds^{2}=r^{2}\left[d\psi	^{2}+\sin	^{2}\psi	\left(d\theta	^{2}+\sin	^{2}\theta	\,d\varphi	^{2}\right)\right]}	and	the	volume	form	by	d	V	=	r	3	(	sin	2		ψ	sin		θ	)	d	ψ	∧	d	θ	∧	d	φ	.	{\displaystyle	dV=r^{3}\left(\sin	^{2}\psi	\,\sin	\theta	\right)\,d\psi	\wedge	d\theta	\wedge	d\varphi	.}	These	coordinates	have	an	elegant	description	in	terms	of
quaternions.	Any	unit	quaternion	q	can	be	written	as	a	versor:	q	=	e	τ	ψ	=	cos		ψ	+	τ	sin		ψ	{\displaystyle	q=e^{\tau	\psi	}=\cos	\psi	+\tau	\sin	\psi	}	where	τ	is	a	unit	imaginary	quaternion;	that	is,	a	quaternion	that	satisfies	τ2	=	−1.	This	is	the	quaternionic	analogue	of	Euler's	formula.	Now	the	unit	imaginary	quaternions	all	lie	on	the	unit	2-sphere	in
Im	H	so	any	such	τ	can	be	written:	τ	=	(	cos		θ	)	i	+	(	sin		θ	cos		φ	)	j	+	(	sin		θ	sin		φ	)	k	{\displaystyle	\tau	=(\cos	\theta	)i+(\sin	\theta	\cos	\varphi	)j+(\sin	\theta	\sin	\varphi	)k}	With	τ	in	this	form,	the	unit	quaternion	q	is	given	by	q	=	e	τ	ψ	=	x	0	+	x	1	i	+	x	2	j	+	x	3	k	{\displaystyle	q=e^{\tau	\psi	}=x_{0}+x_{1}i+x_{2}j+x_{3}k}	where	x0,1,2,3	are
as	above.	When	q	is	used	to	describe	spatial	rotations	(cf.	quaternions	and	spatial	rotations),	it	describes	a	rotation	about	τ	through	an	angle	of	2ψ.	The	Hopf	fibration	can	be	visualized	using	a	stereographic	projection	of	S3	to	R3	and	then	compressing	R3	to	a	ball.	This	image	shows	points	on	S2	and	their	corresponding	fibers	with	the	same	color.	For
unit	radius	another	choice	of	hyperspherical	coordinates,	(η,	ξ1,	ξ2),	makes	use	of	the	embedding	of	S3	in	C2.	In	complex	coordinates	(z1,	z2)	∈	C2	we	write	z	1	=	e	i	ξ	1	sin		η	z	2	=	e	i	ξ	2	cos		η	.	{\displaystyle	{\begin{aligned}z_{1}&=e^{i\,\xi	_{1}}\sin	\eta	\\z_{2}&=e^{i\,\xi	_{2}}\cos	\eta	.\end{aligned}}}	This	could	also	be	expressed	in	R4	as	x
0	=	cos		ξ	1	sin		η	x	1	=	sin		ξ	1	sin		η	x	2	=	cos		ξ	2	cos		η	x	3	=	sin		ξ	2	cos		η	.	{\displaystyle	{\begin{aligned}x_{0}&=\cos	\xi	_{1}\sin	\eta	\\x_{1}&=\sin	\xi	_{1}\sin	\eta	\\x_{2}&=\cos	\xi	_{2}\cos	\eta	\\x_{3}&=\sin	\xi	_{2}\cos	\eta	.\end{aligned}}}	Here	η	runs	over	the	range	0	to	π/2,	and	ξ1	and	ξ2	can	take	any	values	between	0	and	2π.	These
coordinates	are	useful	in	the	description	of	the	3-sphere	as	the	Hopf	bundle	S	1	→	S	3	→	S	2	.	{\displaystyle	S^{1}\to	S^{3}\to	S^{2}.\,}	A	diagram	depicting	the	poloidal	(ξ1)	direction,	represented	by	the	red	arrow,	and	the	toroidal	(ξ2)	direction,	represented	by	the	blue	arrow,	although	the	terms	poloidal	and	toroidal	are	arbitrary	in	this	flat	torus
case.	For	any	fixed	value	of	η	between	0	and	π/2,	the	coordinates	(ξ1,	ξ2)	parameterize	a	2-dimensional	torus.	Rings	of	constant	ξ1	and	ξ2	above	form	simple	orthogonal	grids	on	the	tori.	See	image	to	right.	In	the	degenerate	cases,	when	η	equals	0	or	π/2,	these	coordinates	describe	a	circle.	The	round	metric	on	the	3-sphere	in	these	coordinates	is
given	by	d	s	2	=	d	η	2	+	sin	2		η	d	ξ	1	2	+	cos	2		η	d	ξ	2	2	{\displaystyle	ds^{2}=d\eta	^{2}+\sin	^{2}\eta	\,d\xi	_{1}^{2}+\cos	^{2}\eta	\,d\xi	_{2}^{2}}	and	the	volume	form	by	d	V	=	sin		η	cos		η	d	η	∧	d	ξ	1	∧	d	ξ	2	.	{\displaystyle	dV=\sin	\eta	\cos	\eta	\,d\eta	\wedge	d\xi	_{1}\wedge	d\xi	_{2}.}	To	get	the	interlocking	circles	of	the	Hopf	fibration,
make	a	simple	substitution	in	the	equations	above[3]	z	1	=	e	i	(	ξ	1	+	ξ	2	)	sin		η	z	2	=	e	i	(	ξ	2	−	ξ	1	)	cos		η	.	{\displaystyle	{\begin{aligned}z_{1}&=e^{i\,(\xi	_{1}+\xi	_{2})}\sin	\eta	\\z_{2}&=e^{i\,(\xi	_{2}-\xi	_{1})}\cos	\eta	.\end{aligned}}}	In	this	case	η,	and	ξ1	specify	which	circle,	and	ξ2	specifies	the	position	along	each	circle.	One	round	trip
(0	to	2π)	of	ξ1	or	ξ2	equates	to	a	round	trip	of	the	torus	in	the	2	respective	directions.	Another	convenient	set	of	coordinates	can	be	obtained	via	stereographic	projection	of	S3	from	a	pole	onto	the	corresponding	equatorial	R3	hyperplane.	For	example,	if	we	project	from	the	point	(−1,	0,	0,	0)	we	can	write	a	point	p	in	S3	as	p	=	(	1	−	‖	u	‖	2	1	+	‖	u	‖	2
,	2	u	1	+	‖	u	‖	2	)	=	1	+	u	1	−	u	{\displaystyle	p=\left({\frac	{1-\|u\|^{2}}{1+\|u\|^{2}}},{\frac	{2\mathbf	{u}	}{1+\|u\|^{2}}}\right)={\frac	{1+\mathbf	{u}	}{1-\mathbf	{u}	}}}	where	u	=	(u1,	u2,	u3)	is	a	vector	in	R3	and	‖u‖2	=	u12	+	u22	+	u32.	In	the	second	equality	above,	we	have	identified	p	with	a	unit	quaternion	and	u	=	u1i	+	u2j	+	u3k
with	a	pure	quaternion.	(Note	that	the	numerator	and	denominator	commute	here	even	though	quaternionic	multiplication	is	generally	noncommutative).	The	inverse	of	this	map	takes	p	=	(x0,	x1,	x2,	x3)	in	S3	to	u	=	1	1	+	x	0	(	x	1	,	x	2	,	x	3	)	.	{\displaystyle	\mathbf	{u}	={\frac	{1}{1+x_{0}}}\left(x_{1},x_{2},x_{3}\right).}	We	could	just	as	well
have	projected	from	the	point	(1,	0,	0,	0),	in	which	case	the	point	p	is	given	by	p	=	(	−	1	+	‖	v	‖	2	1	+	‖	v	‖	2	,	2	v	1	+	‖	v	‖	2	)	=	−	1	+	v	1	+	v	{\displaystyle	p=\left({\frac	{-1+\|v\|^{2}}{1+\|v\|^{2}}},{\frac	{2\mathbf	{v}	}{1+\|v\|^{2}}}\right)={\frac	{-1+\mathbf	{v}	}{1+\mathbf	{v}	}}}	where	v	=	(v1,	v2,	v3)	is	another	vector	in	R3.	The
inverse	of	this	map	takes	p	to	v	=	1	1	−	x	0	(	x	1	,	x	2	,	x	3	)	.	{\displaystyle	\mathbf	{v}	={\frac	{1}{1-x_{0}}}\left(x_{1},x_{2},x_{3}\right).}	Note	that	the	u	coordinates	are	defined	everywhere	but	(−1,	0,	0,	0)	and	the	v	coordinates	everywhere	but	(1,	0,	0,	0).	This	defines	an	atlas	on	S3	consisting	of	two	coordinate	charts	or	"patches",	which
together	cover	all	of	S3.	Note	that	the	transition	function	between	these	two	charts	on	their	overlap	is	given	by	v	=	1	‖	u	‖	2	u	{\displaystyle	\mathbf	{v}	={\frac	{1}{\|u\|^{2}}}\mathbf	{u}	}	and	vice	versa.	When	considered	as	the	set	of	unit	quaternions,	S3	inherits	an	important	structure,	namely	that	of	quaternionic	multiplication.	Because	the	set
of	unit	quaternions	is	closed	under	multiplication,	S3	takes	on	the	structure	of	a	group.	Moreover,	since	quaternionic	multiplication	is	smooth,	S3	can	be	regarded	as	a	real	Lie	group.	It	is	a	nonabelian,	compact	Lie	group	of	dimension	3.	When	thought	of	as	a	Lie	group,	S3	is	often	denoted	Sp(1)	or	U(1,	H).	It	turns	out	that	the	only	spheres	that	admit
a	Lie	group	structure	are	S1,	thought	of	as	the	set	of	unit	complex	numbers,	and	S3,	the	set	of	unit	quaternions	(The	degenerate	case	S0	which	consists	of	the	real	numbers	1	and	−1	is	also	a	Lie	group,	albeit	a	0-dimensional	one).	One	might	think	that	S7,	the	set	of	unit	octonions,	would	form	a	Lie	group,	but	this	fails	since	octonion	multiplication	is
nonassociative.	The	octonionic	structure	does	give	S7	one	important	property:	parallelizability.	It	turns	out	that	the	only	spheres	that	are	parallelizable	are	S1,	S3,	and	S7.	By	using	a	matrix	representation	of	the	quaternions,	H,	one	obtains	a	matrix	representation	of	S3.	One	convenient	choice	is	given	by	the	Pauli	matrices:	x	1	+	x	2	i	+	x	3	j	+	x	4	k	↦
(	x	1	+	i	x	2	x	3	+	i	x	4	−	x	3	+	i	x	4	x	1	−	i	x	2	)	.	{\displaystyle	x_{1}+x_{2}i+x_{3}j+x_{4}k\mapsto	{\begin{pmatrix}\;\;\,x_{1}+ix_{2}&x_{3}+ix_{4}\\-x_{3}+ix_{4}&x_{1}-ix_{2}\end{pmatrix}}.}	This	map	gives	an	injective	algebra	homomorphism	from	H	to	the	set	of	2	×	2	complex	matrices.	It	has	the	property	that	the	absolute	value	of	a
quaternion	q	is	equal	to	the	square	root	of	the	determinant	of	the	matrix	image	of	q.	The	set	of	unit	quaternions	is	then	given	by	matrices	of	the	above	form	with	unit	determinant.	This	matrix	subgroup	is	precisely	the	special	unitary	group	SU(2).	Thus,	S3	as	a	Lie	group	is	isomorphic	to	SU(2).	Using	our	Hopf	coordinates	(η,	ξ1,	ξ2)	we	can	then	write
any	element	of	SU(2)	in	the	form	(	e	i	ξ	1	sin		η	e	i	ξ	2	cos		η	−	e	−	i	ξ	2	cos		η	e	−	i	ξ	1	sin		η	)	.	{\displaystyle	{\begin{pmatrix}e^{i\,\xi	_{1}}\sin	\eta	&e^{i\,\xi	_{2}}\cos	\eta	\\-e^{-i\,\xi	_{2}}\cos	\eta	&e^{-i\,\xi	_{1}}\sin	\eta	\end{pmatrix}}.}	Another	way	to	state	this	result	is	if	we	express	the	matrix	representation	of	an	element	of	SU(2)	as	an
exponential	of	a	linear	combination	of	the	Pauli	matrices.	It	is	seen	that	an	arbitrary	element	U	∈	SU(2)	can	be	written	as	U	=	exp		(	∑	i	=	1	3	α	i	J	i	)	.	{\displaystyle	U=\exp	\left(\sum	_{i=1}^{3}\alpha	_{i}J_{i}\right).}	[4]	The	condition	that	the	determinant	of	U	is	+1	implies	that	the	coefficients	α1	are	constrained	to	lie	on	a	3-sphere.	In	Edwin
Abbott	Abbott's	Flatland,	published	in	1884,	and	in	Sphereland,	a	1965	sequel	to	Flatland	by	Dionys	Burger,	the	3-sphere	is	referred	to	as	an	oversphere,	and	a	4-sphere	is	referred	to	as	a	hypersphere.	Writing	in	the	American	Journal	of	Physics,[5]	Mark	A.	Peterson	describes	three	different	ways	of	visualizing	3-spheres	and	points	out	language	in	The
Divine	Comedy	that	suggests	Dante	viewed	the	Universe	in	the	same	way;	Carlo	Rovelli	supports	the	same	idea.[6]	In	Art	Meets	Mathematics	in	the	Fourth	Dimension,[7]	Stephen	L.	Lipscomb	develops	the	concept	of	the	hypersphere	dimensions	as	it	relates	to	art,	architecture,	and	mathematics.	1-sphere,	2-sphere,	n-sphere	tesseract,	polychoron,
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Linking	number	(links	|	edit)	600-cell	(links	|	edit)	View	(previous	50	|	next	50)	(20	|	50	|	100	|	250	|	500)	Retrieved	from	"	WhatLinksHere/3-sphere"	In	math,	a	conjecture	is	like	a	smart	guess	—	something	we	think	is	true	but	haven't	proven.	If	someone	finds	an	example	that	shows	the	guess	is	wrong,	that's	a	counterexample.	It's	a	bit	like	playing	a
detective	game	in	mathematics.	In	this	guide,	we'll	look	at	these	two	ideas,	breaking	them	down	in	easy-to-understand	terms.	Understanding	Conjectures:A	conjecture	is	an	unproven	statement	that	is	believed	to	be	true	based	on	observations.	Conjectures	arise	from	patterns	noticed	by	mathematicians.	While	some	conjectures	have	been	proven,
others	remain	unproven	and	open	to	exploration.	Recognizing	Counterexamples:A	counterexample	is	a	specific	case	or	instance	that	disproves	a	conjecture	or	statement.	If	even	one	counterexample	exists,	it	means	the	conjecture	is	not	universally	true.	Counterexamples	are	indispensable	in	mathematics	for	several	reasons:	They	refine	and	correct
conjectures.	They	prevent	mathematicians	from	pursuing	false	statements.	They	offer	clarity	on	the	limitations	of	a	statement’s	accuracy.	Example	1:	Conjecture	about	Prime	NumbersConjecture:	“All	numbers	less	than	\(10\)	are	prime.”	Solution:Considering	the	numbers	less	than	\(10\):	\(2\),	\(3\),	\(4\),	\(5\),	\(6\),	\(7\),	\(8\),	and	\(9\),	we	can	identify
counterexamples.	Numbers	\(4\),	\(6\),	\(8\),	and	\(9\)	are	not	prime.	Hence,	the	conjecture	is	false.	Example	2:	Conjecture	about	Even	NumbersConjecture:	“All	even	numbers	greater	than	\(2\)	are	not	prime.”	Solution:For	this	conjecture,	the	number	\(2\)	is	a	counterexample.	\(2\)	is	even	and	is	also	prime.	While	the	statement	does	mention	numbers
greater	than	\(2\),	the	inclusion	of	\(2\)	as	an	even	prime	number	highlights	the	need	for	precision	in	the	formulation	of	conjectures.	Example	3:	Fermat’s	Last	TheoremConjecture:	There	are	no	three	integers	\(a\),	\(b\),	and	\(c\)	that	can	satisfy	the	equation	\(a^n	+	b^n	=	c^n\)	for	any	integer	value	of	\(n\)	greater	than	\(2\).	Solution:This	conjecture
remained	unproven	for	centuries.	However,	it	was	eventually	proven	true	by	Andrew	Wiles	in	1994,	meaning	there	are	no	counterexamples.	Conjecture:	All	positive	integers	are	greater	than	\(0\).	Is	this	true	or	false?	If	false,	provide	a	counterexample.	Conjecture:	The	square	of	any	integer	is	positive.	Is	this	true	or	false?	If	false,	provide	a
counterexample.	Conjecture:	All	birds	can	fly.	Is	this	true	or	false?	If	false,	provide	a	counterexample.	Answers:	True.	By	definition,	positive	integers	are	greater	than	\(0\).	True.	The	square	of	any	integer,	whether	positive	or	negative,	is	always	positive.	False.	Counterexample:	Ostriches,	penguins,	and	kiwis	are	birds	that	cannot	fly.


