
	

https://nalufuxikivuv.nurepikis.com/817159894018367521415053476119501885298084?pakadipudokakolosagizuzosit=misubititesimekewusajazejokegalepexagitujapasosarakerubuzerakupanubumezukorenojulusibunesapabosuluvirujowufufujaxakajederidotejefojegetelukuxutasumajojazebanewixixubabugatirikunikitidutalijimokabadurefijidoj&utm_kwd=flutter+rxdart+example&bajamodirelirasadurulutojozoraru=zubinimososinebabinenipenesozexazixebopesoziromifilujobokuzunidifivexiruludogikalosujegowowakafifozuxeruridaxebosovinuzosipobabenupisutalixosuxevuw

RxDart	is	a	reactive	programming	library	for	Dart	and	Flutter	that	provides	a	way	to	handle	asynchronous	and	event-based	programming	using	the	principles	of	ReactiveX.	It	brings	the	power	of	observables,	observers,	and	operators	to	simplify	the	management	of	asynchronous	streams	of	data.	If	you	are	new	to	RxDart,	here	are	some	key	concepts
and	tips	to	get	started:	Understanding	Observables	and	Observers	Observables	are	sources	of	data	that	emit	values	over	time.	They	can	represent	streams	of	events,	user	inputs,	network	requests,	or	any	other	asynchronous	data	source.	Observers,	on	the	other	hand,	listen	to	these	observables	and	react	to	the	emitted	values.	Key	Concepts	in	RxDart
Streams	In	RxDart,	an	Observable	is	represented	by	a	Stream.	A	Stream	is	a	sequence	of	asynchronous	events	that	can	be	listened	to	and	processed.	Subscriptions	When	you	listen	to	a	Stream,	you	create	a	Subscription.	A	Subscription	allows	you	to	control	the	flow	of	events	by	canceling	or	pausing	the	subscription.	Operators	RxDart	provides	a	rich
set	of	operators	that	allow	you	to	transform,	filter,	combine,	and	manipulate	streams	of	data.	These	operators	provide	powerful	and	expressive	ways	to	handle	complex	asynchronous	scenarios.	Getting	Started	with	RxDart	To	use	RxDart	in	your	Dart	or	Flutter	project,	you	need	to	add	the	rxdart	package	to	your	pubspec.yaml	file	and	import	it	into	your
code.	Once	you	have	imported	the	package,	you	can	start	using	RxDart	in	your	project.	Here's	a	basic	example	to	help	you	understand	the	usage:import	'package:rxdart/rxdart.dart';	void	main()	{	final	numbers	=	Stream.fromIterable([1,	2,	3,	4,	5]);	final	doubledNumbers	=	numbers.map((number)	=>	number	*	2);	final	subscription	=
doubledNumbers.listen(print);	//	Output:	2,	4,	6,	8,	10	subscription.cancel();}	In	the	above	example,	we	created	an	Observable	from	an	iterable	of	numbers.	We	then	applied	a	transformation	using	the	map	operator	to	double	each	number	in	the	stream.Finally,	we	listened	to	the	resulting	stream	and	print	the	doubled	numbers.	Don't	forget	to	cancel
the	subscription	to	release	resources	when	you're	done	with	the	stream.	Further	Learning	and	Resources	To	deepen	your	understanding	of	RxDart,	here	are	some	recommended	resources:	Official	RxDart	GitHub	repository:	documentation:	documentation:	By	exploring	these	resources	and	experimenting	with	RxDart	in	your	own	projects,	you'll
quickly	grasp	the	power	and	flexibility	that	reactive	programming	with	RxDart	brings	to	your	Dart	and	Flutter	applications.	Remember,	practice	and	hands-on	experience	are	key	to	mastering	any	new	technology.	Happy	coding!	Hello	again!	Have	you	already	heard	about	reactive	programming?	RxDart	is	a	reactive	functional	programming	library	for
Dart	language,	based	on	ReactiveX.	Dart	already	has	a	decent	package	to	work	with	Streams,	but	RxDart	comes	to	adds	functionality	on	top	of	it.	But	now	you	might	be	asking,	whats	Stream?Streams	and	SinksStreams	represent	flux	of	data	and	events,	and	what	its	important	for?	With	Streams,	you	can	listen	to	data	and	event	changes,	and	just	as
well,	deal	with	whats	coming	from	the	Stream	with	listeners.	How	it	can	be	applied	to	Flutter?	For	example,	we	have	a	Widget	in	Flutter	called	StreamBuilder	that	builds	itself	based	on	the	latest	snapshot	of	interaction	with	a	Stream,	and	when	theres	a	new	flux	of	data	the	Widget	reload	to	deal	with	the	new	data.	Widget	Weekly	of	Flutter	Dev
Channel	offers	great	content	about	how	the	StreamBuilder	works.	And	about	Sinks?	If	we	have	an	output	of	a	data	flux,	we	also	need	an	input,	thats	what	Sinks	is	used	for,	seems	simple	right?	Now	lets	see	about	the	BLoC	pattern	and	how	can	we	combine	both	concepts	into	a	great	Flutter	app.Stream	of	Cats	The	BLoC(Bussiness	Logic	Component)
Pattern	was	announced	officially	by	Paolo	Soares	in	the	Dart	Conference	2018.	If	you	saw	the	announcement	video,	probably	you	realized	that	the	initial	proposal	was	to	reuse	the	code	related	to	the	business	logic	in	other	platforms,	in	this	case,	Angular	Dart.	Shortly	what	the	pattern	seeks	for,	is	take	all	business	logic	code	off	the	UI,	and	using	it
only	in	the	BLoC	classes.	It	brings	to	the	project	and	code,	independence	of	environment	and	platform,	besides	put	the	responsibilities	in	the	correct	component.	And	now	our	talk	will	make	much	more	sense,	because	BLoC	Pattern	only	relies	on	the	use	of	Streams.	at	the	image	above,	we	can	realize	the	flux.	The	Widgets	send	data/event	to	the	BLoC
class	through	Sink	and	are	notified	by	Stream.	See	that	theres	no	business	logic	in	the	widget,	that	means	what	happened	in	BLoC	is	not	the	concern	of	UI.	This	architecture	improves	even	easier	tests,	in	which	the	business	logic	tests	cases	needed	to	be	applied	only	to	the	BLoC	classes.RxDart	is	now	(at	the	moment	of	this	post)	in	the	version	0.21.0.
And	here	Im	going	to	talk	about	some	objects	that	the	library	brings	to	us.Observable	classObservable	allow	us	to	send	a	notification	to	Widgets	which	is	observing	it	and	then	deal	with	the	flux	of	data.	Observable	class	in	RxDart	extends	from	Stream,	which	implies	in	some	great	things:All	methods	defined	on	the	Stream	class	exist	on	Observable	as
well.All	Observable	can	be	passed	to	any	API	that	expects	a	Dart	Stream	as	an	input	(including	for	example	StreamBuilder	Widget).PublishSubject	classThis	one	is	pretty	simple.	This	Subject	allows	sending	data,	error	and	done	events	to	the	listener.	Here	it	will	work	with	Sinks,	which	we	were	talking	about	before.	See	the	example
above:PublishSubject	subject	=	new	PublishSubject();/*this	listener	below	will	print	every	integer	added	to	the	subject:	1,	2,	3,	...*/subject.stream.listen(print);subject.add(1);subject.add(2);/*but	this	listener	below	will	print	only	the	integer	added	after	his	initialization:	3,	.../*subject.stream.listen(print);subject.add(3);BehaviorSubject	classThis	one	is
similar	to	the	PublishSubject.	It	also	allows	sending	data,	error	and	done	events	to	the	listener,	but	the	latest	item	that	has	been	added	to	the	subject	will	be	sent	to	any	new	listeners	of	the	subject.	But	dont	you	worry,	after	that,	any	new	events	will	be	appropriately	sent	to	the	listeners.	See	the	example	above:BehaviorSubject	subject	=	new
BehaviorSubject();subject.stream.listen(print);	//	prints	1,2,3	subject.add(1);subject.add(2);subject.add(3);subject.stream.listen(print);	//	prints	3ReplaySubject	classThe	ReplaySubject	allow	us	the	same:	sending	data,	error	and	done	events	to	the	listener.	But	with	a	crucial	difference	here.	As	items	are	added	to	the	subject,	the	ReplaySubject	will	store
them	and	when	the	stream	is	listened	to,	those	recorded	items	will	be	emitted	to	the	listener.	See	the	example	above:ReplaySubject	subject	=	new	ReplaySubject();subject.add(1);subject.add(2);subject.add(3);subject.stream.listen(print);	//	prints	1,	2,	3Now	lets	see	it	in	practiceIn	this	article	I	will	show	to	you	a	simple	example	of	using	RxDart	and
principles	of	BLoC	pattern.	Lets	start	it.Now	I	really	need	your	attentionA	great	way	to	start	it,	is	from	the	beginning:	Flutter	Hello	World.	Probably	you	are	familiarized	with	the	increment	function	on	the	app,	but	to	make	more	lets	create	the	decrement	function	as	well.	So	first	of	all,	create	a	flutter	project	and	import	rxdart	to	your	project.	Lets
code:As	you	can	see,	this	code	implements	the	increment	and	decrement	function,	but	still	doesnt	apply	the	BLoC	pattern	or	even	Streams.	This	code	works	and	its	pretty	simple,	but	if	you	took	attention	youll	see	that	we	have	two	logic	business	function	in	the	UI	code:	increment	and	decrement.	So	imagine	if	this	app	was	a	big	app	that	you	was
working	hard,	but	now	the	requirement	has	been	changed	and	the	increment	needs	to	add	two	at	time.	Do	you	agree	with	me	(that	in	this	case)	a	requirement	changing	in	the	business	logic	shouldnt	affect	UI	code,	right?	If	yes,	great!	You	got	it,	that	is	the	point	to	separate	responsibilities.Now	lets	separate	it	and	use	what	we	have	learned	so	far.	Lets
create	our	CounterBloc	class:bloc/CounterBloc.dartGreat!	Now	let	me	explain	the	code	above.	We	created	a	class	called	CounterBloc	which	imports	the	rxdart	library.	In	this	case,	we	need	to	receive	the	initialCount,	that	allow	us	to	know	from	which	number	our	counter	should	begin.	I	choose	for	this	example	the	BehaviorSubeject,	and	then	I
initialized	the	Subject	with	the	data	passed	by	parameter,	in	other	words,	when	the	Widget	become	a	listener	of	the	Subject	the	first	value	passed	through	the	stream	will	be	the	initialCount	which	was	set	in	the	CounterBloc	constructor.	Now	lets	talk	about	the	methods.	In	this	case,	we	have	four	methods	in	the	class:increment():	increment	the
initialCount	and	send	to	the	Subject	listeners	by	Sink	the	new	value.decrement():	decrement	the	initialCount	and	send	to	the	Subject	listeners	by	Sink	the	new	value.dispose():	close	the	opened	subject.counterObeservable():	return	an	Observable	of	the	Subject,	in	other	words,	the	object	which	will	be	used	to	notify	the	Widgets	when	changes	happen
in	the	Stream.Now	that	we	have	the	BLoC	class	created	lets	see	integrating	it	with	the	UI.We	changed	some	few	things	in	the	UI:Now	we	initialize	the	CounterBloc	with	initialCount	=	0.Then	we	removed	the	increment	and	decrement	methods.	Those	method	implementations	are	not	the	responsibility	of	UI	anymore.When	the	both
FloatingActionButton	is	clicked,	it	calls	the	correspondent	method	in	the	CounterBloc.Now	we	use	StreamBuilder	to	show	our	data	on	the	screen.	We	called	StreamBuilder	passing	as	Stream	our	counterObservable	method	available	by	the	CounterBloc	class,	and	we	call	the	builder	which	must	deal	with	the	data	which	comes	from	the	Strem	and	return
the	appropriate	Widget.At	this	moment	our	well-structured	app	will	look	like	this:App	runningNotes	and	conclusions:Thats	it,	guys.	Theres	a	lot	of	alternatives	to	structure	your	Flutter	app	and	patterns	to	help	with	state	management	like	BLoC,	Redux,	ScopedModel,	and	others.	I	confess	BLoC	is	my	favorite,	but	tell	me	if	you	liked	it	too.	Thank	you	for
reading	the	article	so	far,	and	please	let	your	feedback.	Tell	me	if	you	want	part	2	with	a	more	complex	example.Theres	my	social	network:	LinkedIn,	GitHub,	Twitter.	(Feel	free	to	contact	me).References:Updated	(November	2020)There	are	many	way	to	use	Stream	in	Flutter	and	also	many	way	to	write	the	same	code.In	this	article	we	will	see	three
different	way	to	write	a	Counter	App	using	Streams,	RxDart	and	Flutter	Hooks.Table	of	Contents	What	is	a	StreamStreams	are	just	a	sequence	of	data	that	flows	in	a	asynchronous	way,	in	Flutter	are	widely	use	by	many	Widgets	to	listen	for	new	data/changes	to	then	rebuild	part	of	the	widget	tree.The	most	common	Streams	are:Stream:	just	listen	for
new	data;StreamController:	allow	to	both	listen	and	add/emit	data	to	a	streamWhat	are	Flutter	Hooks?In	short,	Flutter	Hooks	are	basically	a	simplify	version	of	StatefulWidget,	they	will	handle	the	lifecycle	of	an	Object	inside	the	build	method	of	a	simple	StatelessWidget.If	you	are	familiar	with	React	Native	it	will	just	take	seconds	to	get	started	with
Flutter	Hooks,	if	you	are	not,	don't	worry,	the	concept	is	simple,	but	you	still	need	to	be	careful	when	using	it	to	avoid	unnecessary	rebuild	of	the	widget	tree.Flutter	hooks	package	already	provide	a	full	list	of	reusable	hooks	and	creating	Custom	Hooks	is	so	a	simple	task	that	can	easily	create	new	ones	that	fit	our	need.In	our	case,	we	need	a	custom
Hook,	but	first	let's	see	some	code	should	we?Use	Streams	with	HooksLet's	start	from	an	example,	the	classic	counter	app,	but	implemented	using	Streams.Pure	FlutterFirst	we	use	a	Pure	Flutter	approach,	no	third	party	library	needed.with_pure_flutter.dartsclass	CounterApp	extends	StatefulWidget	{	const	CounterApp({Key	key})	:	super(key:	key);
@override	_CounterAppState	createState()	=>	_CounterAppState();}class	_CounterAppState	extends	State	{	StreamController	controller;	int	count	=	0;	@override	void	initState()	{	super.initState();	controller	=	StreamController.broadcast();	}	@override	void	dispose()	{	super.dispose();	controller.dispose();	}	@override	Widget	build(BuildContext
context)	{	return	Scaffold(appBar:	AppBar(title:	Text('Counter	App'),),	body:	GestureDetector(onTap:	()	=>	controller.add(count++),	child:	StreamBuilder(stream:	controller.stream,	initialData:	0,	builder:	(context,	snapshot)	=>	Text('You	tapped	me	${snapshot.data}	times.'),),),);	}}We	need	to	use	a	StatefulWidget	because	we	need	to	safely
dispose	the	StreamController,	we	don't	want	any	memory	leaks.We	also	need	a	count	variable	to	store	the	current	count	since	we	can't	access	the	current	StreamController	value	inside	the	onTap	function.Some	people	will	be	"fine"	with	this	is	code,	it	works,	is	not	that	verbose,	but	we	can	do	better.Using	Flutter	HooksAmong	the	Flutter	hooks
example	there	is	similar	counter	app	that	uses	Stream	and	StreamController	hooks,	it	also	use	shared_preferences	to	store	the	counter	value,	but	we	don't	need	that	for	this	example,	so	the	simplified	code	will	be	like	this:with_flutter_hooks.dartimport	'package:flutter_hooks/flutter_hooks.dart';class	CounterApp	extends	HookWidget	{	const
CounterApp({Key	key})	:	super(key:	key);	@override	Widget	build(BuildContext	context)	{	final	controller	=	useStreamController();	return	Scaffold(appBar:	AppBar(title:	Text('Counter	App'),),	body:	HookBuilder(builder:	(context)	{	final	count	=	useStream(controller.stream);	return	GestureDetector(onTap:	()	=>	controller.add(count.data	+	1),
child:	Text('You	tapped	me	${count.data}	times.'),);	}),);	}}We	simplified	a	bit,	we	don't	need	to	dispose	the	StreamController,	Flutter	Hooks	will	handle	this	for	us.We	also	don't	need	a	count	variable,	we	can	use	the	useStream,	but	we	need	to	use	HookBuilder	widget	to	avoid	rebuilding	the	whole	app	when	the	stream	changes.Can	we	do	even
better?	let's	try	8)Enhanced	Streams	with	RxDartThere	is	another	type	of	Stream,	provided	by	the	RxDart	package	called	BehaviorSubject.	If	you	are	familiar	with	the	Reactive	Extensions	for	Async	Programming	you	might	already	know	if	not,	this	is	a	Stream	with	Memory,	once	subscribed,	it	will	emit	the	previous	last	value.It	also	provide	a	way	to
access	the	current	value	of	the	stream.In	order	to	use	it	in	a	HookWidget,	we	need	to	create	Custom	Widgetuse_behavior_stream_controller_hook.dartimport	'package:rxdart/rxdart.dart';import	'package:flutter_hooks/flutter_hooks.dart';BehaviorSubject	useBehaviorStreamController({bool	sync	=	false,	VoidCallback	onListen,	VoidCallback	onCancel,
List	keys})	{	return	use(_BehaviorStreamControllerHook(onCancel:	onCancel,	onListen:	onListen,	sync:	sync,	keys:	keys,));}class	_BehaviorStreamControllerHook	extends	Hook	{	const	_BehaviorStreamControllerHook({this.sync	=	false,	this.onListen,	this.onCancel,	List	keys})	:	super(keys:	keys);	final	bool	sync;	final	VoidCallback	onListen;	final
VoidCallback	onCancel;	@override	_BehaviorStreamControllerHookState	createState()	=>	_BehaviorStreamControllerHookState();}class	_BehaviorStreamControllerHookState	extends	HookState	{	BehaviorSubject	_controller;	@override	void	initHook()	{	super.initHook();	_controller	=	BehaviorSubject(sync:	hook.sync,	onCancel:	hook.onCancel,
onListen:	hook.onListen,);	}	@override	void	didUpdateHook(_BehaviorStreamControllerHook	oldHook)	{	super.didUpdateHook(oldHook);	if	(oldHook.onListen	!=	hook.onListen)	{	_controller.onListen	=	hook.onListen;	}	if	(oldHook.onCancel	!=	hook.onCancel)	{	_controller.onCancel	=	hook.onCancel;	}	}	@override	BehaviorSubject
build(BuildContext	context)	{	return	_controller;	}	@override	void	dispose()	{	_controller.close();	}	@override	String	get	debugLabel	=>	'useBehaviorStreamController';}We	create	a	new	hooks	called	useBehaviorStreamController,	the	code	is	exactly	like	the	useStreamController	hooks,	but	it	use	the	RxDart	BehaviorSubject	instead	of	the	Flutter
StreamController.The	final	optimized	resultWith	is	useBehaviorStreamController	hooks,	we	can	write	our	counter	app	in	a	more	compact	way:with_behavior_stream_controller.dartimport	'package:flutter_hooks/flutter_hooks.dart';class	CounterApp	extends	HookWidget	{	const	CounterApp({Key	key})	:	super(key:	key);	@override	Widget
build(BuildContext	context)	{	final	controller	=	useBehaviorStreamController();	return	Scaffold(appBar:	AppBar(title:	Text('Counter	App'),),	body:	GestureDetector(onTap:	()	=>	controller.add(controller.value	+	1),	child:	StreamBuilder(stream:	controller.stream,	initialData:	0,	builder:	(context,	snapshot)	=>	Text('You	tapped	me	${snapshot.data}
times.'),),),);	}}We	are	using	a	StreamBuilder,	but	this	time	in	the	onTap	function	we	can	directly	access	the	current	value	of	the	stream.With	this	last	optimization	our	code	now	is	much	shorter,	we	don't	need	the	HookBuilder	and	we	will	just	rebuild	the	Text	widget	using	a	StreamBuilder.Additional	ResourcesRxDartFlutter	HooksStreamController
Ayoub	Ali	Posted	on	May	30,	2023	Reactive	programming	is	a	popular	paradigm	that	enables	developers	to	build	highly	responsive	and	scalable	applications.	When	combined	with	the	Flutter	framework,	it	empowers	developers	to	create	dynamic	and	reactive	user	interfaces.	One	of	the	most	powerful	libraries	for	reactive	programming	in	Flutter	is
RxDart.	In	this	blog	post,	we	will	explore	the	fundamentals	of	reactive	programming	and	demonstrate	how	RxDart	can	be	leveraged	to	enhance	your	Flutter	applications.	Outline	Core	Concepts	of	Reactive	Programming	At	its	core,	reactive	programming	revolves	around	three	fundamental	concepts:	Observables:Observables	represent	a	sequence	of
values	that	can	change	over	time.	They	can	emit	data	or	events,	and	other	parts	of	the	application	can	subscribe	to	these	observables	to	be	notified	when	new	values	or	events	are	available.Streams:Streams	are	a	type	of	observables	in	reactive	programming.	They	provide	a	continuous	flow	of	data	or	events	over	time.	Developers	can	listen	to	streams
and	react	to	the	data	or	events	emitted	by	them.Data	Flow:Reactive	programming	encourages	a	unidirectional	data	flow,	where	changes	in	the	observables	trigger	updates	in	dependent	components	or	operations.	This	ensures	that	the	application	remains	responsive	and	efficiently	handles	changes	without	causing	unnecessary	side	effects.	By
leveraging	these	core	concepts,	reactive	programming	enables	developers	to	build	applications	that	can	react	to	user	interactions,	data	updates,	and	other	events	in	a	scalable	and	efficient	manner.	It	promotes	a	more	declarative	and	event-driven	style	of	programming,	making	it	easier	to	handle	complex	asynchronous	operations	and	maintain	a
responsive	user	interface.	RxDart	Installation	and	Setup	To	install	RxDart	and	set	it	up	in	your	Flutter	project,	follow	these	steps:	Open	your	Flutter	project	in	an	IDE	or	text	editor.Open	the	pubspec.yaml	file	located	in	the	root	directory	of	your	Flutter	project.In	the	dependencies	section	of	the	pubspec.yaml	file,	add	the	following	line:dependencies:
rxdart:	^0.27.1	This	line	specifies	that	your	project	will	depend	on	the	RxDart	library	and	uses	version	0.27.1	(or	the	latest	version	available).	Save	the	pubspec.yaml	file.In	your	IDE	or	terminal,	run	the	following	command	to	fetch	and	install	the	RxDart	library:	This	command	will	download	the	RxDart	library	and	make	it	available	for	use	in	your
Flutter	project.	Once	the	installation	is	complete,	you	can	start	using	RxDart	in	your	Flutter	code.	Import	the	RxDart	package	in	the	relevant	files	where	you	intend	to	use	it:import	'package:rxdart/rxdart.dart';	You	are	now	ready	to	utilize	RxDart	and	its	reactive	programming	capabilities	in	your	Flutter	project.	Refer	to	the	RxDart	documentation	and
examples	to	learn	about	different	observables,	streams,	and	operators	provided	by	the	library.	Remember	to	import	the	necessary	classes	from	the	RxDart	package	whenever	you	need	to	use	them	in	your	code.	Note:	Make	sure	to	follow	the	Flutter	and	Dart	version	compatibility	requirements	specified	by	the	RxDart	library.	Key	concept	of	Observable,
Stream,	StreamController	and	Subjects	in	RxDart	Key	Concepts	in	RxDart:	Observable:	Observables	represent	a	stream	of	data	or	events	that	can	change	over	time.They	allow	you	to	emit	values	or	events	and	enable	other	parts	of	the	application	to	subscribe	and	react	to	those	emissions.Observables	can	be	created	from	various	sources	such	as	lists,
futures,	or	streams.	Example:	//	Creating	an	Observable	from	a	List	final	numbers	=	Observable.fromIterable([1,	2,	3,	4,	5]);	//	Subscribing	to	the	Observable	final	subscription	=	numbers.listen((number)	{	print('Received	number:	$number');	});	//	Output:	Received	number:	1,	Received	number:	2,	...	Stream	and	StreamController:	A	stream	represents
a	sequence	of	asynchronous	events.	It	is	a	core	concept	in	Dart's	async	programming	model.StreamController	acts	as	a	source	of	events	for	a	stream.	It	allows	you	to	add	events	to	the	stream	and	control	its	flow.Streams	provide	a	way	to	handle	asynchronous	data	and	enable	listening	to	events	emitted	by	the	stream.	Example:	//	Creating	a
StreamController	final	controller	=	StreamController();	//	Adding	events	to	the	stream	controller.add(1);	controller.add(2);	controller.add(3);	//	Listening	to	the	stream	final	subscription	=	controller.stream.listen((event)	{	print('Received	event:	$event');	});	//	Output:	Received	event:	1,	Received	event:	2,	...	Subjects:	Subjects	are	a	type	of	Observable
and	StreamController	combined.	They	can	act	as	both	a	source	of	events	and	a	stream	to	listen	to	those	events.RxDart	provides	different	types	of	subjects,	such	as	BehaviorSubject,	PublishSubject,	and	ReplaySubject,	each	with	unique	characteristics.Subjects	are	often	used	for	managing	state	and	broadcasting	events	within	reactive	programming.
Example:	//	Creating	a	BehaviorSubject	final	subject	=	BehaviorSubject();	//	Subscribing	to	the	BehaviorSubject	final	subscription	=	subject.listen((value)	{	print('Received	value:	$value');	});	//	Emitting	values	through	the	BehaviorSubject	subject.add(1);	subject.add(2);	subject.add(3);	//	Output:	Received	value:	1,	Received	value:	2,	...	Reactive	event
handling	Combining	streams	and	observables	in	RxDart	1.	Reactive	Event	Handling:	Reactive	event	handling	refers	to	the	ability	of	RxDart	to	handle	and	react	to	events	in	a	reactive	and	efficient	manner.	It	allows	you	to	listen	to	events	from	various	sources,	such	as	user	interactions,	network	responses,	or	timer	events,	and	perform	actions	based	on
those	events.	RxDart	provides	operators	and	techniques	to	handle	events	reactively,	enabling	you	to	build	responsive	and	dynamic	applications.	Example	of	Reactive	Event	Handling://	Creating	an	Observable	for	button	pressesfinal	buttonPresses	=	Observable(controller.stream);	//	Subscribing	to	button	presses	and	reacting	to	the	eventsfinal
subscription	=	buttonPresses.listen((event)	{	print('Button	pressed!');});	//	Simulating	button	presses	by	adding	events	to	the	streamcontroller.add(true);controller.add(false);	//	Output:	Button	pressed!,	Button	pressed!	2.	Combining	Streams	and	Observables:	Combining	streams	and	observables	in	RxDart	allows	you	to	merge,	combine,	or	transform
multiple	streams	or	observables	into	a	single	stream	or	observable.	This	capability	is	useful	when	you	need	to	handle	multiple	data	sources	or	perform	complex	operations	on	data	emitted	by	different	streams	or	observables.	Example	of	Combining	Streams	and	Observables://	Creating	two	streamsfinal	stream1	=	Stream.fromIterable([1,	2,	3]);final
stream2	=	Stream.fromIterable([4,	5,	6]);	//	Combining	the	streams	into	a	single	streamfinal	combinedStream	=	Rx.concat([stream1,	stream2]);	//	Subscribing	to	the	combined	stream	and	reacting	to	the	eventsfinal	subscription	=	combinedStream.listen((event)	{	print('Combined	event:	$event');});	//	Output:	Combined	event:	1,	Combined	event:	2,	...,
Combined	event:	6	In	this	example,	the	concat	operator	from	RxDart	combines	two	streams	into	a	single	stream,	merging	their	events	in	the	order	they	occur.	The	resulting	combined	stream	emits	events	from	both	stream1	and	stream2.	Advanced	Techniques	and	Best	PracticesThrottling	and	Debouncing:	Throttling	and	debouncing	are	techniques
used	to	control	the	rate	at	which	events	are	emitted.Throttling	limits	the	number	of	events	emitted	within	a	specified	time	interval.Debouncing	delays	emitting	events	until	a	specified	quiet	period	occurs,	discarding	any	previous	events	within	that	period.	Example	of	Throttling:	//	Creating	an	Observable	from	button	presses	final	buttonPresses	=
Observable(controller.stream);	//	Throttling	the	button	presses	to	emit	at	most	one	event	per	500	milliseconds	final	throttledButtonPresses	=	buttonPresses.throttleTime(Duration(milliseconds:	500));	//	Subscribing	to	the	throttled	button	presses	final	subscription	=	throttledButtonPresses.listen((event)	{	print('Button	pressed!');	});	//	Simulating
multiple	button	presses	for	(int	i	=	0;	i	<	10;	i++)	{	controller.add(true);	await	Future.delayed(Duration(milliseconds:	100));	}	//	Output:	Button	pressed!	Example	of	Debouncing:	//	Creating	an	Observable	from	search	queries	final	searchQueries	=	Observable(controller.stream);	//	Debouncing	the	search	queries	to	emit	events	only	after	500
milliseconds	of	quiet	period	final	debouncedSearchQueries	=	searchQueries.debounceTime(Duration(milliseconds:	500));	//	Subscribing	to	the	debounced	search	queries	final	subscription	=	debouncedSearchQueries.listen((query)	{	print('Search	query:	$query');	//	Perform	search	operation	here	});	//	Simulating	search	queries	controller.add('flutter');
await	Future.delayed(Duration(milliseconds:	200));	controller.add('rx');	await	Future.delayed(Duration(milliseconds:	200));	controller.add('dart');	await	Future.delayed(Duration(milliseconds:	800));	//	Output:	Search	query:	dart	Error	Handling	and	Retries:	RxDart	provides	operators	to	handle	errors	emitted	by	observables	or	streams.Error-handling
operators	like	onErrorResumeNext	or	catchError	allow	you	to	handle	errors	gracefully	and	provide	fallback	mechanisms.You	can	also	implement	retry	mechanisms	using	operators	like	retry	or	retryWhen	to	automatically	retry	failed	operations.	Example	of	Error	Handling	and	Retries:	//	Creating	an	Observable	from	a	network	request	final	request	=
Observable.fromFuture(fetchDataFromNetwork());	//	Handling	errors	and	providing	a	fallback	value	final	response	=	request.onErrorResumeNext(Observable.just('Fallback	response'));	//	Subscribing	to	the	response	final	subscription	=	response.listen((data)	{	print('Received	data:	$data');	},	onError:	(error)	{	print('Error	occurred:	$error');	});	//
Output:	Received	data:	Fallback	response	(in	case	of	error)	Memory	Management	and	Resource	Disposal:	It	is	essential	to	manage	resources	and	dispose	of	subscriptions	and	subjects	properly	to	avoid	memory	leaks.Use	the	takeUntil	or	takeWhile	operators	to	automatically	dispose	of	subscriptions	when	certain	conditions	are	met.Dispose	of
subscriptions	and	subjects	explicitly	using	the	subscription.cancel()	or	subject.close()	methods	when	they	are	no	longer	needed.	Example	of	Memory	Management	and	Resource	Disposal:	//	Creating	an	Observable	from	a	timer	final	timer	=	Observable(Stream.periodic(Duration(seconds:	1),	(value)	=>	value));	//	Subscribing	to	the	timer	and
automatically	disposing	of	the	subscription	after	5	seconds	final	subscription	=	timer.takeUntil(Observable.timer(null,	Duration(seconds:	5))).listen((value)	{	print('Timer	value:	$value');	});	//	Output:	Timer	value:	0,	Timer	value:	1,	Timer	value:	2,	Timer	value:	3,	Timer	value:	4	//	Disposing	of	the	subscription	explicitly	after	it	is	no	longer	needed
subscription.cancel();	Testing	and	Debugging	with	RxDart	Testing	and	debugging	are	crucial	aspects	of	any	software	development	process.	Here's	how	you	can	approach	testing	and	debugging	with	RxDart,	along	with	an	example:	Testing	with	RxDart:	RxDart	provides	various	utilities	and	techniques	to	test	observables,	streams,	and	operators.Use	the
TestWidgetsFlutterBinding.ensureInitialized()	method	to	initialize	the	test	environment	before	running	RxDart	tests.Utilize	the	TestStream	class	from	the	rxdart/testing.dart	package	to	create	testable	streams	and	observables.Use	test-specific	operators	like	materialize()	and	dematerialize()	to	convert	events	into	notifications	that	can	be	easily
asserted.	Example	of	Testing	with	RxDart:	import	'package:rxdart/rxdart.dart';	import	'package:rxdart/testing.dart';	import	'package:test/test.dart';	void	main()	{	test('Test	observable	emits	correct	values',	()	{	//	Initialize	the	test	environment	TestWidgetsFlutterBinding.ensureInitialized();	//	Create	a	TestStream	final	stream	=	TestStream();	//	Emit
values	to	the	stream	stream.emit(1);	stream.emit(2);	stream.emit(3);	stream.close();	//	Create	an	observable	from	the	TestStream	final	observable	=	Observable(stream);	//	Assert	the	emitted	values	expect(observable,	emitsInOrder([1,	2,	3]));	});	}	Debugging	with	RxDart:	RxDart	provides	debugging	operators	that	help	analyze	and	debug	observables
and	streams	during	development.The	doOnData()	operator	allows	you	to	inspect	each	emitted	data	item,	enabling	you	to	log	or	perform	other	debugging	operations.The	doOnError()	and	doOnDone()	operators	allow	you	to	handle	error	and	completion	events	respectively	for	debugging	purposes.	Example	of	Debugging	with	RxDart:	//	Creating	an
observable	from	a	list	final	observable	=	Observable.fromIterable([1,	2,	3,	4,	5]);	//	Adding	the	doOnData	operator	for	debugging	final	debugObservable	=	observable.doOnData((data)	{	print('Data:	$data');	});	//	Subscribing	to	the	debugObservable	final	subscription	=	debugObservable.listen((data)	{	print('Received	data:	$data');	},	onError:	(error)	{
print('Error	occurred:	$error');	},	onDone:	()	{	print('Stream	completed');	});	//	Output:	//	Data:	1	//	Received	data:	1	//	Data:	2	//	Received	data:	2	//	Data:	3	//	Received	data:	3	//	Data:	4	//	Received	data:	4	//	Data:	5	//	Received	data:	5	//	Stream	completed	By	applying	testing	and	debugging	techniques,	you	can	ensure	the	correctness	and	reliability	of
your	RxDart	code.	Test	your	observables	and	streams	using	the	provided	testing	utilities	and	leverage	debugging	operators	to	gain	insights	into	the	behavior	of	your	reactive	code	during	development	and	troubleshooting	processes.	Real-World	Example	In	this	example	we	will	build	a	fully	functional	app	that	search	a	world	from	JSON	API.	Step	-1	In
first	step	we	will	generate	a	model	for	our	JSON	API.Use	can	use	QuikeType.io	to	generate	it	just	paste	the	JSON	schema	and	you	have	the	model	@immutableclass	Words	{	final	List	names;	const	Words({	required	this.names,	});	Words	copyWith({	List?	names,	})	=>	Words(names:	names	??	this.names,);	factory	Words.fromJson(Map	json)	=>
Words(names:	List.from(json["names"].map((x)	=>	x)),);	Map	toJson()	=>	{	"names":	List.from(names.map((x)	=>	x)),	};}	This	code	provides	a	way	to	convert	Words	objects	to	JSON	and	vice	versa,	making	it	easy	to	serialize	and	deserialize	the	data	for	communication	or	storage	purposes.	Step	-2	Let's	build	a	heraricary	that	focuses	on	creating	of
classes	representing	different	search	result	states.	Each	class	represents	a	specific	state,	such	as	loading,	no	result,	error,	or	with	a	successful	result.import	'package:flutter/foundation.dart'	show	immutable;	@immutableabstract	class	SearchResult	{	const	SearchResult();}	@immutableclass	SearchResultLoading	implements	SearchResult	{	const
SearchResultLoading();}	@immutableclass	SearchResultNoResult	implements	SearchResult	{	const	SearchResultNoResult();}	@immutableclass	SearchResultWithError	implements	SearchResult	{	final	Object?	error;	const	SearchResultWithError(this.error);}	@immutableclass	SearchResultWithResult	implements	SearchResult	{	final	List	result;
const	SearchResultWithResult(this.result);}	Step	-	3	Let's	Write	code	that	demonstrates	and	performs	a	search	operation	on	a	list	of	words	fetched	from	an	API.	This	code	demonstrates	the	basic	steps	involved	in	performing	a	search	operation	using	a	remote	API,	caching	the	results,	and	extracting	the	matching	words	based	on	a	search	term.import
'dart:convert';	import	'package:http/http.dart'	as	http;	class	Api	{	List?	_words;	Api();	//	Step	-	3	Future	search(String	searchTerm)	async	{	final	term	=	searchTerm.trim().toLowerCase();	final	cachedResult	=	_extractWordsUsingSearchTerm(searchTerm);	if	(cachedResult	!=	null)	{	return	cachedResult;	}	//	api	calling	final	words	=	await	_getData("
_words	=	words;	return	_extractWordsUsingSearchTerm(term)	??	[];	}	//	Step	-	2	List?	_extractWordsUsingSearchTerm(String	word)	{	final	cachedWords	=	_words;	if	(cachedWords	!=	null)	{	List	result	=	[];	for	(final	worded	in	cachedWords)	{	if	(worded.contains(word.trim().toLowerCase()))	{	result.add(worded);	}	}	return	result;	}	else	{	return
null;	}	}	//	Step	-	1	//	Future	_getData(String	url)	=>	HttpClient()	//	.getUrl(Uri.parse(url))	//	.then((request)	=>	request.close())	//	.then((response)	=>	response.transform(utf8.decoder).join())	//	.then((jsonString)	=>	json.decode(jsonString)	as	List);	Future	_getData(String	url)	async	{	final	response	=	await	http.Client().get(Uri.parse(url));	final
parsed	=	jsonDecode(response.body)['names'];	List?	names	=	parsed	!=	null	?	List.from(parsed)	:	null;	return	names;	}}	//	work	only	on	String	not	listextension	TrimmedCaseInsensitiveContain	on	String	{	bool	trimmedContains(String	other)	=>	trim().toLowerCase().contains(other.trim().toLowerCase(),);}	Step	-	4	This	code	demonstrates	the	setup
of	a	reactive	search	bloc	using	RxDart.	It	establishes	a	bidirectional	communication	channel	for	searching	by	providing	a	sink	to	add	search	terms	and	a	stream	to	receive	search	results.	The	search	terms	undergo	stream	transformations	to	control	the	search	behavior,	and	the	results	are	emitted	as	a	stream	of	SearchResult	objects	with	different
states.	The	result	stream	is	created	by	chaining	several	stream	transformations	on	textChanges.	It	performs	the	following	operations:	-	distinct()	ensures	that	only	distinct	search	terms	are	processed.	-	debounceTime(const	Duration(milliseconds:	350))	delays	the	processing	of	the	search	term	stream,	allowing	a	brief	duration	(350	milliseconds)	of
inactivity	before	emitting	the	latest	search	term.	This	helps	to	reduce	unnecessary	API	calls	for	rapidly	changing	search	terms.	-	switchMap((String	searchTerm)	maps	each	search	term	to	a	stream	of	SearchResult	objects	based	on	the	search	operation.	If	the	search	term	is	empty,	it	immediately	emits	a	null	result.	Otherwise,	it	performs	the	actual
search	operation	using	the	api.search	method,	which	returns	a	Future>.	This	future	is	wrapped	using	Rx.fromCallable	and	then	delayed	by	1	second	using	delay	to	introduce	a	delay	before	emitting	the	result.	The	mapped	stream	is	further	transformed	using	map	to	convert	the	search	results	into	appropriate	SearchResult	objects
(SearchResultNoResult,	SearchResultWithResult,	or	SearchResultLoading)	based	on	the	conditions.	-	startWith(const	SearchResultLoading())	emits	a	loading	result	as	the	initial	value	when	the	search	begins.	-	onErrorReturnWith((error,	_)	=>	SearchResultWithError(error))	handles	any	errors	that	occur	during	the	search	operation	and	emits	a
SearchResultWithError	object.import	'dart:async';	import	'package:flutter/foundation.dart'	show	immutable;import	'package:infinite_words/bloc/api.dart';import	'package:infinite_words/bloc/search_result.dart';import	'package:rxdart/rxdart.dart';	@immutableclass	SearchBloc	{	final	Sink	search;	final	Stream	results;	void	dispose()	{	search.close();	}
factory	SearchBloc({required	Api	api})	{	final	textChanges	=	BehaviorSubject();	final	result	=	textChanges	.distinct()	.debounceTime(const	Duration(milliseconds:	350))	.switchMap((String	searchTerm)	{	if	(searchTerm.isEmpty)	{	return	Stream.value(null);	}	else	{	return	Rx.fromCallable(()	=>	api.search(searchTerm))	.delay(const	Duration(seconds:
1))	.map((results)	=>	results.isEmpty	?	const	SearchResultNoResult()	:	SearchResultWithResult(results),)	.startWith(const	SearchResultLoading())	.onErrorReturnWith((error,	_)	=>	SearchResultWithError(error));	}	});	return	SearchBloc._(search:	textChanges.sink,	results:	result,);	}	const	SearchBloc._({	required	this.search,	required	this.results,
});}	Step	-	5	UI	Development	Custom	widget	to	display	out	search	result	in	GridViewimport	'package:flutter/material.dart';	class	GridViewWidget	extends	StatelessWidget	{	const	GridViewWidget({	Key?	key,	required	this.results,	})	:	super(key:	key);	final	List	results;	@override	Widget	build(BuildContext	context)	{	return	Expanded(child:
GridView.builder(itemCount:	results.length,	gridDelegate:	const	SliverGridDelegateWithMaxCrossAxisExtent(maxCrossAxisExtent:	200,	childAspectRatio:	3	/	2,	crossAxisSpacing:	20,	mainAxisSpacing:	20),	itemBuilder:	(context,	index)	{	return	Container(alignment:	Alignment.center,	decoration:	BoxDecoration(color:	Colors.white,	borderRadius:
BorderRadius.circular(15)),	child:	Text(results[index],	textAlign:	TextAlign.center,	style:	const	TextStyle(fontSize:	20,	fontWeight:	FontWeight.bold),),);	},),);	}}	Step	-	6	This	code	provides	a	UI	representation	of	the	different	states	of	the	search	results	and	handles	the	appropriate	rendering	based	on	the	received	data.import
'package:flutter/material.dart';import	'package:infinite_words/bloc/search_result.dart';import	'package:infinite_words/widgets/grid_view_widget.dart';	class	SearchResultView	extends	StatelessWidget	{	final	Stream	searchResults;	const	SearchResultView({	Key?	key,	required	this.searchResults,	})	:	super(key:	key);	@override	Widget
build(BuildContext	context)	{	return	StreamBuilder(stream:	searchResults,	builder:	(BuildContext	context,	AsyncSnapshot	snapshot,)	{	if	(snapshot.hasData)	{	final	result	=	snapshot.data;	if	(result	is	SearchResultWithError)	{	return	const	Center(child:	Text('Error'));	}	else	if	(result	is	SearchResultLoading)	{	return	const	Center(child:
CircularProgressIndicator());	}	else	if	(result	is	SearchResultNoResult)	{	return	const	Center(child:	Text('No	Result	Found'));	}	else	if	(result	is	SearchResultWithResult)	{	final	results	=	result.result;	return	GridViewWidget(results:	results);	}	else	{	return	const	Center(child:	Text("Unknown	State"));	}	}	else	{	return	const	Center(child:	Text(
"Waiting.....",	style:	TextStyle(color:	Colors.white,	fontSize:	18),),);	}	},);	}}	Step	-7	This	code	sets	up	the	home	page	of	the	application	with	a	text	input	field	for	searching	words	and	displays	the	search	results	using	the	SearchResultView	widget.	The	SearchBloc	manages	the	search	functionality	and	emits	the	search	results	to	the	UI.import
'package:flutter/material.dart';import	'package:infinite_words/bloc/api.dart';import	'package:infinite_words/bloc/search_bloc.dart';import	'package:infinite_words/view/search_result_view.dart';	class	HomePage	extends	StatefulWidget	{	const	HomePage({Key?	key})	:	super(key:	key);	@override	State	createState()	=>	_HomePageState();}	class
_HomePageState	extends	State	{	late	final	SearchBloc	_bloc;	@override	void	initState()	{	_bloc	=	SearchBloc(api:	Api());	super.initState();	}	@override	void	dispose()	{	super.dispose();	_bloc.dispose();	}	@override	Widget	build(BuildContext	context)	{	return	Scaffold(backgroundColor:	Colors.black,	//	appBar:	AppBar(//	title:	const	Text('Search'),	//),
body:	Padding(padding:	const	EdgeInsets.all(10),	child:	Column(children:	[const	SizedBox(height:	50,),	TextField(decoration:	InputDecoration(border:	InputBorder.none,	filled:	true,	fillColor:	Colors.white,	contentPadding:	const	EdgeInsets.only(left:	14.0,	bottom:	6.0,	top:	8.0),	focusedBorder:	OutlineInputBorder(borderSide:	const
BorderSide(color:	Colors.grey),	borderRadius:	BorderRadius.circular(10.0),),	enabledBorder:	UnderlineInputBorder(borderSide:	const	BorderSide(color:	Colors.white),	borderRadius:	BorderRadius.circular(10.0),),	hintText:	"Write	a	word",	hintStyle:	const	TextStyle(fontSize:	20,	//	color:	Colors.white,)),	onChanged:	_bloc.search.add),	const
SizedBox(height:	10,),	SearchResultView(searchResults:	_bloc.results)],),),);	}}	SourceCode	Ayoub	Ali	Posted	on	May	30,	2023	Reactive	programming	is	a	popular	paradigm	that	enables	developers	to	build	highly	responsive	and	scalable	applications.	When	combined	with	the	Flutter	framework,	it	empowers	developers	to	create	dynamic	and
reactive	user	interfaces.	One	of	the	most	powerful	libraries	for	reactive	programming	in	Flutter	is	RxDart.	In	this	blog	post,	we	will	explore	the	fundamentals	of	reactive	programming	and	demonstrate	how	RxDart	can	be	leveraged	to	enhance	your	Flutter	applications.	Outline	Core	Concepts	of	Reactive	Programming	At	its	core,	reactive	programming
revolves	around	three	fundamental	concepts:	Observables:Observables	represent	a	sequence	of	values	that	can	change	over	time.	They	can	emit	data	or	events,	and	other	parts	of	the	application	can	subscribe	to	these	observables	to	be	notified	when	new	values	or	events	are	available.Streams:Streams	are	a	type	of	observables	in	reactive
programming.	They	provide	a	continuous	flow	of	data	or	events	over	time.	Developers	can	listen	to	streams	and	react	to	the	data	or	events	emitted	by	them.Data	Flow:Reactive	programming	encourages	a	unidirectional	data	flow,	where	changes	in	the	observables	trigger	updates	in	dependent	components	or	operations.	This	ensures	that	the
application	remains	responsive	and	efficiently	handles	changes	without	causing	unnecessary	side	effects.	By	leveraging	these	core	concepts,	reactive	programming	enables	developers	to	build	applications	that	can	react	to	user	interactions,	data	updates,	and	other	events	in	a	scalable	and	efficient	manner.	It	promotes	a	more	declarative	and	event-
driven	style	of	programming,	making	it	easier	to	handle	complex	asynchronous	operations	and	maintain	a	responsive	user	interface.	RxDart	Installation	and	Setup	To	install	RxDart	and	set	it	up	in	your	Flutter	project,	follow	these	steps:	Open	your	Flutter	project	in	an	IDE	or	text	editor.Open	the	pubspec.yaml	file	located	in	the	root	directory	of	your
Flutter	project.In	the	dependencies	section	of	the	pubspec.yaml	file,	add	the	following	line:dependencies:	rxdart:	^0.27.1	This	line	specifies	that	your	project	will	depend	on	the	RxDart	library	and	uses	version	0.27.1	(or	the	latest	version	available).	Save	the	pubspec.yaml	file.In	your	IDE	or	terminal,	run	the	following	command	to	fetch	and	install	the
RxDart	library:	This	command	will	download	the	RxDart	library	and	make	it	available	for	use	in	your	Flutter	project.	Once	the	installation	is	complete,	you	can	start	using	RxDart	in	your	Flutter	code.	Import	the	RxDart	package	in	the	relevant	files	where	you	intend	to	use	it:import	'package:rxdart/rxdart.dart';	You	are	now	ready	to	utilize	RxDart	and
its	reactive	programming	capabilities	in	your	Flutter	project.	Refer	to	the	RxDart	documentation	and	examples	to	learn	about	different	observables,	streams,	and	operators	provided	by	the	library.	Remember	to	import	the	necessary	classes	from	the	RxDart	package	whenever	you	need	to	use	them	in	your	code.	Note:	Make	sure	to	follow	the	Flutter
and	Dart	version	compatibility	requirements	specified	by	the	RxDart	library.	Key	concept	of	Observable,	Stream,	StreamController	and	Subjects	in	RxDart	Key	Concepts	in	RxDart:	Observable:	Observables	represent	a	stream	of	data	or	events	that	can	change	over	time.They	allow	you	to	emit	values	or	events	and	enable	other	parts	of	the	application
to	subscribe	and	react	to	those	emissions.Observables	can	be	created	from	various	sources	such	as	lists,	futures,	or	streams.	Example:	//	Creating	an	Observable	from	a	List	final	numbers	=	Observable.fromIterable([1,	2,	3,	4,	5]);	//	Subscribing	to	the	Observable	final	subscription	=	numbers.listen((number)	{	print('Received	number:	$number');	});	//
Output:	Received	number:	1,	Received	number:	2,	...	Stream	and	StreamController:	A	stream	represents	a	sequence	of	asynchronous	events.	It	is	a	core	concept	in	Dart's	async	programming	model.StreamController	acts	as	a	source	of	events	for	a	stream.	It	allows	you	to	add	events	to	the	stream	and	control	its	flow.Streams	provide	a	way	to	handle
asynchronous	data	and	enable	listening	to	events	emitted	by	the	stream.	Example:	//	Creating	a	StreamController	final	controller	=	StreamController();	//	Adding	events	to	the	stream	controller.add(1);	controller.add(2);	controller.add(3);	//	Listening	to	the	stream	final	subscription	=	controller.stream.listen((event)	{	print('Received	event:	$event');	});
//	Output:	Received	event:	1,	Received	event:	2,	...	Subjects:	Subjects	are	a	type	of	Observable	and	StreamController	combined.	They	can	act	as	both	a	source	of	events	and	a	stream	to	listen	to	those	events.RxDart	provides	different	types	of	subjects,	such	as	BehaviorSubject,	PublishSubject,	and	ReplaySubject,	each	with	unique
characteristics.Subjects	are	often	used	for	managing	state	and	broadcasting	events	within	reactive	programming.	Example:	//	Creating	a	BehaviorSubject	final	subject	=	BehaviorSubject();	//	Subscribing	to	the	BehaviorSubject	final	subscription	=	subject.listen((value)	{	print('Received	value:	$value');	});	//	Emitting	values	through	the	BehaviorSubject
subject.add(1);	subject.add(2);	subject.add(3);	//	Output:	Received	value:	1,	Received	value:	2,	...	Reactive	event	handling	Combining	streams	and	observables	in	RxDart	1.	Reactive	Event	Handling:	Reactive	event	handling	refers	to	the	ability	of	RxDart	to	handle	and	react	to	events	in	a	reactive	and	efficient	manner.	It	allows	you	to	listen	to	events
from	various	sources,	such	as	user	interactions,	network	responses,	or	timer	events,	and	perform	actions	based	on	those	events.	RxDart	provides	operators	and	techniques	to	handle	events	reactively,	enabling	you	to	build	responsive	and	dynamic	applications.	Example	of	Reactive	Event	Handling://	Creating	an	Observable	for	button	pressesfinal
buttonPresses	=	Observable(controller.stream);	//	Subscribing	to	button	presses	and	reacting	to	the	eventsfinal	subscription	=	buttonPresses.listen((event)	{	print('Button	pressed!');});	//	Simulating	button	presses	by	adding	events	to	the	streamcontroller.add(true);controller.add(false);	//	Output:	Button	pressed!,	Button	pressed!	2.	Combining
Streams	and	Observables:	Combining	streams	and	observables	in	RxDart	allows	you	to	merge,	combine,	or	transform	multiple	streams	or	observables	into	a	single	stream	or	observable.	This	capability	is	useful	when	you	need	to	handle	multiple	data	sources	or	perform	complex	operations	on	data	emitted	by	different	streams	or	observables.	Example
of	Combining	Streams	and	Observables://	Creating	two	streamsfinal	stream1	=	Stream.fromIterable([1,	2,	3]);final	stream2	=	Stream.fromIterable([4,	5,	6]);	//	Combining	the	streams	into	a	single	streamfinal	combinedStream	=	Rx.concat([stream1,	stream2]);	//	Subscribing	to	the	combined	stream	and	reacting	to	the	eventsfinal	subscription	=
combinedStream.listen((event)	{	print('Combined	event:	$event');});	//	Output:	Combined	event:	1,	Combined	event:	2,	...,	Combined	event:	6	In	this	example,	the	concat	operator	from	RxDart	combines	two	streams	into	a	single	stream,	merging	their	events	in	the	order	they	occur.	The	resulting	combined	stream	emits	events	from	both	stream1	and
stream2.	Advanced	Techniques	and	Best	PracticesThrottling	and	Debouncing:	Throttling	and	debouncing	are	techniques	used	to	control	the	rate	at	which	events	are	emitted.Throttling	limits	the	number	of	events	emitted	within	a	specified	time	interval.Debouncing	delays	emitting	events	until	a	specified	quiet	period	occurs,	discarding	any	previous
events	within	that	period.	Example	of	Throttling:	//	Creating	an	Observable	from	button	presses	final	buttonPresses	=	Observable(controller.stream);	//	Throttling	the	button	presses	to	emit	at	most	one	event	per	500	milliseconds	final	throttledButtonPresses	=	buttonPresses.throttleTime(Duration(milliseconds:	500));	//	Subscribing	to	the	throttled
button	presses	final	subscription	=	throttledButtonPresses.listen((event)	{	print('Button	pressed!');	});	//	Simulating	multiple	button	presses	for	(int	i	=	0;	i	<	10;	i++)	{	controller.add(true);	await	Future.delayed(Duration(milliseconds:	100));	}	//	Output:	Button	pressed!	Example	of	Debouncing:	//	Creating	an	Observable	from	search	queries	final
searchQueries	=	Observable(controller.stream);	//	Debouncing	the	search	queries	to	emit	events	only	after	500	milliseconds	of	quiet	period	final	debouncedSearchQueries	=	searchQueries.debounceTime(Duration(milliseconds:	500));	//	Subscribing	to	the	debounced	search	queries	final	subscription	=	debouncedSearchQueries.listen((query)	{
print('Search	query:	$query');	//	Perform	search	operation	here	});	//	Simulating	search	queries	controller.add('flutter');	await	Future.delayed(Duration(milliseconds:	200));	controller.add('rx');	await	Future.delayed(Duration(milliseconds:	200));	controller.add('dart');	await	Future.delayed(Duration(milliseconds:	800));	//	Output:	Search	query:	dart	Error
Handling	and	Retries:	RxDart	provides	operators	to	handle	errors	emitted	by	observables	or	streams.Error-handling	operators	like	onErrorResumeNext	or	catchError	allow	you	to	handle	errors	gracefully	and	provide	fallback	mechanisms.You	can	also	implement	retry	mechanisms	using	operators	like	retry	or	retryWhen	to	automatically	retry	failed
operations.	Example	of	Error	Handling	and	Retries:	//	Creating	an	Observable	from	a	network	request	final	request	=	Observable.fromFuture(fetchDataFromNetwork());	//	Handling	errors	and	providing	a	fallback	value	final	response	=	request.onErrorResumeNext(Observable.just('Fallback	response'));	//	Subscribing	to	the	response	final	subscription
=	response.listen((data)	{	print('Received	data:	$data');	},	onError:	(error)	{	print('Error	occurred:	$error');	});	//	Output:	Received	data:	Fallback	response	(in	case	of	error)	Memory	Management	and	Resource	Disposal:	It	is	essential	to	manage	resources	and	dispose	of	subscriptions	and	subjects	properly	to	avoid	memory	leaks.Use	the	takeUntil	or
takeWhile	operators	to	automatically	dispose	of	subscriptions	when	certain	conditions	are	met.Dispose	of	subscriptions	and	subjects	explicitly	using	the	subscription.cancel()	or	subject.close()	methods	when	they	are	no	longer	needed.	Example	of	Memory	Management	and	Resource	Disposal:	//	Creating	an	Observable	from	a	timer	final	timer	=
Observable(Stream.periodic(Duration(seconds:	1),	(value)	=>	value));	//	Subscribing	to	the	timer	and	automatically	disposing	of	the	subscription	after	5	seconds	final	subscription	=	timer.takeUntil(Observable.timer(null,	Duration(seconds:	5))).listen((value)	{	print('Timer	value:	$value');	});	//	Output:	Timer	value:	0,	Timer	value:	1,	Timer	value:	2,
Timer	value:	3,	Timer	value:	4	//	Disposing	of	the	subscription	explicitly	after	it	is	no	longer	needed	subscription.cancel();	Testing	and	Debugging	with	RxDart	Testing	and	debugging	are	crucial	aspects	of	any	software	development	process.	Here's	how	you	can	approach	testing	and	debugging	with	RxDart,	along	with	an	example:	Testing	with	RxDart:
RxDart	provides	various	utilities	and	techniques	to	test	observables,	streams,	and	operators.Use	the	TestWidgetsFlutterBinding.ensureInitialized()	method	to	initialize	the	test	environment	before	running	RxDart	tests.Utilize	the	TestStream	class	from	the	rxdart/testing.dart	package	to	create	testable	streams	and	observables.Use	test-specific
operators	like	materialize()	and	dematerialize()	to	convert	events	into	notifications	that	can	be	easily	asserted.	Example	of	Testing	with	RxDart:	import	'package:rxdart/rxdart.dart';	import	'package:rxdart/testing.dart';	import	'package:test/test.dart';	void	main()	{	test('Test	observable	emits	correct	values',	()	{	//	Initialize	the	test	environment
TestWidgetsFlutterBinding.ensureInitialized();	//	Create	a	TestStream	final	stream	=	TestStream();	//	Emit	values	to	the	stream	stream.emit(1);	stream.emit(2);	stream.emit(3);	stream.close();	//	Create	an	observable	from	the	TestStream	final	observable	=	Observable(stream);	//	Assert	the	emitted	values	expect(observable,	emitsInOrder([1,	2,	3]));	});
}	Debugging	with	RxDart:	RxDart	provides	debugging	operators	that	help	analyze	and	debug	observables	and	streams	during	development.The	doOnData()	operator	allows	you	to	inspect	each	emitted	data	item,	enabling	you	to	log	or	perform	other	debugging	operations.The	doOnError()	and	doOnDone()	operators	allow	you	to	handle	error	and
completion	events	respectively	for	debugging	purposes.	Example	of	Debugging	with	RxDart:	//	Creating	an	observable	from	a	list	final	observable	=	Observable.fromIterable([1,	2,	3,	4,	5]);	//	Adding	the	doOnData	operator	for	debugging	final	debugObservable	=	observable.doOnData((data)	{	print('Data:	$data');	});	//	Subscribing	to	the
debugObservable	final	subscription	=	debugObservable.listen((data)	{	print('Received	data:	$data');	},	onError:	(error)	{	print('Error	occurred:	$error');	},	onDone:	()	{	print('Stream	completed');	});	//	Output:	//	Data:	1	//	Received	data:	1	//	Data:	2	//	Received	data:	2	//	Data:	3	//	Received	data:	3	//	Data:	4	//	Received	data:	4	//	Data:	5	//	Received	data:
5	//	Stream	completed	By	applying	testing	and	debugging	techniques,	you	can	ensure	the	correctness	and	reliability	of	your	RxDart	code.	Test	your	observables	and	streams	using	the	provided	testing	utilities	and	leverage	debugging	operators	to	gain	insights	into	the	behavior	of	your	reactive	code	during	development	and	troubleshooting	processes.
Real-World	Example	In	this	example	we	will	build	a	fully	functional	app	that	search	a	world	from	JSON	API.	Step	-1	In	first	step	we	will	generate	a	model	for	our	JSON	API.Use	can	use	QuikeType.io	to	generate	it	just	paste	the	JSON	schema	and	you	have	the	model	@immutableclass	Words	{	final	List	names;	const	Words({	required	this.names,	});
Words	copyWith({	List?	names,	})	=>	Words(names:	names	??	this.names,);	factory	Words.fromJson(Map	json)	=>	Words(names:	List.from(json["names"].map((x)	=>	x)),);	Map	toJson()	=>	{	"names":	List.from(names.map((x)	=>	x)),	};}	This	code	provides	a	way	to	convert	Words	objects	to	JSON	and	vice	versa,	making	it	easy	to	serialize	and
deserialize	the	data	for	communication	or	storage	purposes.	Step	-2	Let's	build	a	heraricary	that	focuses	on	creating	of	classes	representing	different	search	result	states.	Each	class	represents	a	specific	state,	such	as	loading,	no	result,	error,	or	with	a	successful	result.import	'package:flutter/foundation.dart'	show	immutable;	@immutableabstract
class	SearchResult	{	const	SearchResult();}	@immutableclass	SearchResultLoading	implements	SearchResult	{	const	SearchResultLoading();}	@immutableclass	SearchResultNoResult	implements	SearchResult	{	const	SearchResultNoResult();}	@immutableclass	SearchResultWithError	implements	SearchResult	{	final	Object?	error;	const
SearchResultWithError(this.error);}	@immutableclass	SearchResultWithResult	implements	SearchResult	{	final	List	result;	const	SearchResultWithResult(this.result);}	Step	-	3	Let's	Write	code	that	demonstrates	and	performs	a	search	operation	on	a	list	of	words	fetched	from	an	API.	This	code	demonstrates	the	basic	steps	involved	in	performing	a
search	operation	using	a	remote	API,	caching	the	results,	and	extracting	the	matching	words	based	on	a	search	term.import	'dart:convert';	import	'package:http/http.dart'	as	http;	class	Api	{	List?	_words;	Api();	//	Step	-	3	Future	search(String	searchTerm)	async	{	final	term	=	searchTerm.trim().toLowerCase();	final	cachedResult	=
_extractWordsUsingSearchTerm(searchTerm);	if	(cachedResult	!=	null)	{	return	cachedResult;	}	//	api	calling	final	words	=	await	_getData("	_words	=	words;	return	_extractWordsUsingSearchTerm(term)	??	[];	}	//	Step	-	2	List?	_extractWordsUsingSearchTerm(String	word)	{	final	cachedWords	=	_words;	if	(cachedWords	!=	null)	{	List	result	=	[];
for	(final	worded	in	cachedWords)	{	if	(worded.contains(word.trim().toLowerCase()))	{	result.add(worded);	}	}	return	result;	}	else	{	return	null;	}	}	//	Step	-	1	//	Future	_getData(String	url)	=>	HttpClient()	//	.getUrl(Uri.parse(url))	//	.then((request)	=>	request.close())	//	.then((response)	=>	response.transform(utf8.decoder).join())	//	.then((jsonString)
=>	json.decode(jsonString)	as	List);	Future	_getData(String	url)	async	{	final	response	=	await	http.Client().get(Uri.parse(url));	final	parsed	=	jsonDecode(response.body)['names'];	List?	names	=	parsed	!=	null	?	List.from(parsed)	:	null;	return	names;	}}	//	work	only	on	String	not	listextension	TrimmedCaseInsensitiveContain	on	String	{	bool
trimmedContains(String	other)	=>	trim().toLowerCase().contains(other.trim().toLowerCase(),);}	Step	-	4	This	code	demonstrates	the	setup	of	a	reactive	search	bloc	using	RxDart.	It	establishes	a	bidirectional	communication	channel	for	searching	by	providing	a	sink	to	add	search	terms	and	a	stream	to	receive	search	results.	The	search	terms
undergo	stream	transformations	to	control	the	search	behavior,	and	the	results	are	emitted	as	a	stream	of	SearchResult	objects	with	different	states.	The	result	stream	is	created	by	chaining	several	stream	transformations	on	textChanges.	It	performs	the	following	operations:	-	distinct()	ensures	that	only	distinct	search	terms	are	processed.	-
debounceTime(const	Duration(milliseconds:	350))	delays	the	processing	of	the	search	term	stream,	allowing	a	brief	duration	(350	milliseconds)	of	inactivity	before	emitting	the	latest	search	term.	This	helps	to	reduce	unnecessary	API	calls	for	rapidly	changing	search	terms.	-	switchMap((String	searchTerm)	maps	each	search	term	to	a	stream	of
SearchResult	objects	based	on	the	search	operation.	If	the	search	term	is	empty,	it	immediately	emits	a	null	result.	Otherwise,	it	performs	the	actual	search	operation	using	the	api.search	method,	which	returns	a	Future>.	This	future	is	wrapped	using	Rx.fromCallable	and	then	delayed	by	1	second	using	delay	to	introduce	a	delay	before	emitting	the
result.	The	mapped	stream	is	further	transformed	using	map	to	convert	the	search	results	into	appropriate	SearchResult	objects	(SearchResultNoResult,	SearchResultWithResult,	or	SearchResultLoading)	based	on	the	conditions.	-	startWith(const	SearchResultLoading())	emits	a	loading	result	as	the	initial	value	when	the	search	begins.	-
onErrorReturnWith((error,	_)	=>	SearchResultWithError(error))	handles	any	errors	that	occur	during	the	search	operation	and	emits	a	SearchResultWithError	object.import	'dart:async';	import	'package:flutter/foundation.dart'	show	immutable;import	'package:infinite_words/bloc/api.dart';import	'package:infinite_words/bloc/search_result.dart';import
'package:rxdart/rxdart.dart';	@immutableclass	SearchBloc	{	final	Sink	search;	final	Stream	results;	void	dispose()	{	search.close();	}	factory	SearchBloc({required	Api	api})	{	final	textChanges	=	BehaviorSubject();	final	result	=	textChanges	.distinct()	.debounceTime(const	Duration(milliseconds:	350))	.switchMap((String	searchTerm)	{	if
(searchTerm.isEmpty)	{	return	Stream.value(null);	}	else	{	return	Rx.fromCallable(()	=>	api.search(searchTerm))	.delay(const	Duration(seconds:	1))	.map((results)	=>	results.isEmpty	?	const	SearchResultNoResult()	:	SearchResultWithResult(results),)	.startWith(const	SearchResultLoading())	.onErrorReturnWith((error,	_)	=>
SearchResultWithError(error));	}	});	return	SearchBloc._(search:	textChanges.sink,	results:	result,);	}	const	SearchBloc._({	required	this.search,	required	this.results,	});}	Step	-	5	UI	Development	Custom	widget	to	display	out	search	result	in	GridViewimport	'package:flutter/material.dart';	class	GridViewWidget	extends	StatelessWidget	{	const
GridViewWidget({	Key?	key,	required	this.results,	})	:	super(key:	key);	final	List	results;	@override	Widget	build(BuildContext	context)	{	return	Expanded(child:	GridView.builder(itemCount:	results.length,	gridDelegate:	const	SliverGridDelegateWithMaxCrossAxisExtent(maxCrossAxisExtent:	200,	childAspectRatio:	3	/	2,	crossAxisSpacing:	20,
mainAxisSpacing:	20),	itemBuilder:	(context,	index)	{	return	Container(alignment:	Alignment.center,	decoration:	BoxDecoration(color:	Colors.white,	borderRadius:	BorderRadius.circular(15)),	child:	Text(results[index],	textAlign:	TextAlign.center,	style:	const	TextStyle(fontSize:	20,	fontWeight:	FontWeight.bold),),);	},),);	}}	Step	-	6	This	code
provides	a	UI	representation	of	the	different	states	of	the	search	results	and	handles	the	appropriate	rendering	based	on	the	received	data.import	'package:flutter/material.dart';import	'package:infinite_words/bloc/search_result.dart';import	'package:infinite_words/widgets/grid_view_widget.dart';	class	SearchResultView	extends	StatelessWidget	{
final	Stream	searchResults;	const	SearchResultView({	Key?	key,	required	this.searchResults,	})	:	super(key:	key);	@override	Widget	build(BuildContext	context)	{	return	StreamBuilder(stream:	searchResults,	builder:	(BuildContext	context,	AsyncSnapshot	snapshot,)	{	if	(snapshot.hasData)	{	final	result	=	snapshot.data;	if	(result	is
SearchResultWithError)	{	return	const	Center(child:	Text('Error'));	}	else	if	(result	is	SearchResultLoading)	{	return	const	Center(child:	CircularProgressIndicator());	}	else	if	(result	is	SearchResultNoResult)	{	return	const	Center(child:	Text('No	Result	Found'));	}	else	if	(result	is	SearchResultWithResult)	{	final	results	=	result.result;	return
GridViewWidget(results:	results);	}	else	{	return	const	Center(child:	Text("Unknown	State"));	}	}	else	{	return	const	Center(child:	Text("Waiting.....",	style:	TextStyle(color:	Colors.white,	fontSize:	18),),);	}	},);	}}	Step	-7	This	code	sets	up	the	home	page	of	the	application	with	a	text	input	field	for	searching	words	and	displays	the	search	results
using	the	SearchResultView	widget.	The	SearchBloc	manages	the	search	functionality	and	emits	the	search	results	to	the	UI.import	'package:flutter/material.dart';import	'package:infinite_words/bloc/api.dart';import	'package:infinite_words/bloc/search_bloc.dart';import	'package:infinite_words/view/search_result_view.dart';	class	HomePage	extends
StatefulWidget	{	const	HomePage({Key?	key})	:	super(key:	key);	@override	State	createState()	=>	_HomePageState();}	class	_HomePageState	extends	State	{	late	final	SearchBloc	_bloc;	@override	void	initState()	{	_bloc	=	SearchBloc(api:	Api());	super.initState();	}	@override	void	dispose()	{	super.dispose();	_bloc.dispose();	}	@override	Widget
build(BuildContext	context)	{	return	Scaffold(backgroundColor:	Colors.black,	//	appBar:	AppBar(//	title:	const	Text('Search'),	//),	body:	Padding(padding:	const	EdgeInsets.all(10),	child:	Column(children:	[const	SizedBox(height:	50,),	TextField(decoration:	InputDecoration(border:	InputBorder.none,	filled:	true,	fillColor:	Colors.white,
contentPadding:	const	EdgeInsets.only(left:	14.0,	bottom:	6.0,	top:	8.0),	focusedBorder:	OutlineInputBorder(borderSide:	const	BorderSide(color:	Colors.grey),	borderRadius:	BorderRadius.circular(10.0),),	enabledBorder:	UnderlineInputBorder(borderSide:	const	BorderSide(color:	Colors.white),	borderRadius:	BorderRadius.circular(10.0),),	hintText:
"Write	a	word",	hintStyle:	const	TextStyle(fontSize:	20,	//	color:	Colors.white,)),	onChanged:	_bloc.search.add),	const	SizedBox(height:	10,),	SearchResultView(searchResults:	_bloc.results)],),),);	}}	SourceCode	Ayoub	Ali	Posted	on	May	30,	2023	Reactive	programming	is	a	popular	paradigm	that	enables	developers	to	build	highly	responsive	and
scalable	applications.	When	combined	with	the	Flutter	framework,	it	empowers	developers	to	create	dynamic	and	reactive	user	interfaces.	One	of	the	most	powerful	libraries	for	reactive	programming	in	Flutter	is	RxDart.	In	this	blog	post,	we	will	explore	the	fundamentals	of	reactive	programming	and	demonstrate	how	RxDart	can	be	leveraged	to
enhance	your	Flutter	applications.	Outline	Core	Concepts	of	Reactive	Programming	At	its	core,	reactive	programming	revolves	around	three	fundamental	concepts:	Observables:Observables	represent	a	sequence	of	values	that	can	change	over	time.	They	can	emit	data	or	events,	and	other	parts	of	the	application	can	subscribe	to	these	observables	to
be	notified	when	new	values	or	events	are	available.Streams:Streams	are	a	type	of	observables	in	reactive	programming.	They	provide	a	continuous	flow	of	data	or	events	over	time.	Developers	can	listen	to	streams	and	react	to	the	data	or	events	emitted	by	them.Data	Flow:Reactive	programming	encourages	a	unidirectional	data	flow,	where	changes
in	the	observables	trigger	updates	in	dependent	components	or	operations.	This	ensures	that	the	application	remains	responsive	and	efficiently	handles	changes	without	causing	unnecessary	side	effects.	By	leveraging	these	core	concepts,	reactive	programming	enables	developers	to	build	applications	that	can	react	to	user	interactions,	data	updates,

and	other	events	in	a	scalable	and	efficient	manner.	It	promotes	a	more	declarative	and	event-driven	style	of	programming,	making	it	easier	to	handle	complex	asynchronous	operations	and	maintain	a	responsive	user	interface.	RxDart	Installation	and	Setup	To	install	RxDart	and	set	it	up	in	your	Flutter	project,	follow	these	steps:	Open	your	Flutter
project	in	an	IDE	or	text	editor.Open	the	pubspec.yaml	file	located	in	the	root	directory	of	your	Flutter	project.In	the	dependencies	section	of	the	pubspec.yaml	file,	add	the	following	line:dependencies:	rxdart:	^0.27.1	This	line	specifies	that	your	project	will	depend	on	the	RxDart	library	and	uses	version	0.27.1	(or	the	latest	version	available).	Save
the	pubspec.yaml	file.In	your	IDE	or	terminal,	run	the	following	command	to	fetch	and	install	the	RxDart	library:	This	command	will	download	the	RxDart	library	and	make	it	available	for	use	in	your	Flutter	project.	Once	the	installation	is	complete,	you	can	start	using	RxDart	in	your	Flutter	code.	Import	the	RxDart	package	in	the	relevant	files	where
you	intend	to	use	it:import	'package:rxdart/rxdart.dart';	You	are	now	ready	to	utilize	RxDart	and	its	reactive	programming	capabilities	in	your	Flutter	project.	Refer	to	the	RxDart	documentation	and	examples	to	learn	about	different	observables,	streams,	and	operators	provided	by	the	library.	Remember	to	import	the	necessary	classes	from	the
RxDart	package	whenever	you	need	to	use	them	in	your	code.	Note:	Make	sure	to	follow	the	Flutter	and	Dart	version	compatibility	requirements	specified	by	the	RxDart	library.	Key	concept	of	Observable,	Stream,	StreamController	and	Subjects	in	RxDart	Key	Concepts	in	RxDart:	Observable:	Observables	represent	a	stream	of	data	or	events	that	can
change	over	time.They	allow	you	to	emit	values	or	events	and	enable	other	parts	of	the	application	to	subscribe	and	react	to	those	emissions.Observables	can	be	created	from	various	sources	such	as	lists,	futures,	or	streams.	Example:	//	Creating	an	Observable	from	a	List	final	numbers	=	Observable.fromIterable([1,	2,	3,	4,	5]);	//	Subscribing	to	the
Observable	final	subscription	=	numbers.listen((number)	{	print('Received	number:	$number');	});	//	Output:	Received	number:	1,	Received	number:	2,	...	Stream	and	StreamController:	A	stream	represents	a	sequence	of	asynchronous	events.	It	is	a	core	concept	in	Dart's	async	programming	model.StreamController	acts	as	a	source	of	events	for	a
stream.	It	allows	you	to	add	events	to	the	stream	and	control	its	flow.Streams	provide	a	way	to	handle	asynchronous	data	and	enable	listening	to	events	emitted	by	the	stream.	Example:	//	Creating	a	StreamController	final	controller	=	StreamController();	//	Adding	events	to	the	stream	controller.add(1);	controller.add(2);	controller.add(3);	//	Listening
to	the	stream	final	subscription	=	controller.stream.listen((event)	{	print('Received	event:	$event');	});	//	Output:	Received	event:	1,	Received	event:	2,	...	Subjects:	Subjects	are	a	type	of	Observable	and	StreamController	combined.	They	can	act	as	both	a	source	of	events	and	a	stream	to	listen	to	those	events.RxDart	provides	different	types	of
subjects,	such	as	BehaviorSubject,	PublishSubject,	and	ReplaySubject,	each	with	unique	characteristics.Subjects	are	often	used	for	managing	state	and	broadcasting	events	within	reactive	programming.	Example:	//	Creating	a	BehaviorSubject	final	subject	=	BehaviorSubject();	//	Subscribing	to	the	BehaviorSubject	final	subscription	=
subject.listen((value)	{	print('Received	value:	$value');	});	//	Emitting	values	through	the	BehaviorSubject	subject.add(1);	subject.add(2);	subject.add(3);	//	Output:	Received	value:	1,	Received	value:	2,	...	Reactive	event	handling	Combining	streams	and	observables	in	RxDart	1.	Reactive	Event	Handling:	Reactive	event	handling	refers	to	the	ability	of
RxDart	to	handle	and	react	to	events	in	a	reactive	and	efficient	manner.	It	allows	you	to	listen	to	events	from	various	sources,	such	as	user	interactions,	network	responses,	or	timer	events,	and	perform	actions	based	on	those	events.	RxDart	provides	operators	and	techniques	to	handle	events	reactively,	enabling	you	to	build	responsive	and	dynamic
applications.	Example	of	Reactive	Event	Handling://	Creating	an	Observable	for	button	pressesfinal	buttonPresses	=	Observable(controller.stream);	//	Subscribing	to	button	presses	and	reacting	to	the	eventsfinal	subscription	=	buttonPresses.listen((event)	{	print('Button	pressed!');});	//	Simulating	button	presses	by	adding	events	to	the
streamcontroller.add(true);controller.add(false);	//	Output:	Button	pressed!,	Button	pressed!	2.	Combining	Streams	and	Observables:	Combining	streams	and	observables	in	RxDart	allows	you	to	merge,	combine,	or	transform	multiple	streams	or	observables	into	a	single	stream	or	observable.	This	capability	is	useful	when	you	need	to	handle	multiple
data	sources	or	perform	complex	operations	on	data	emitted	by	different	streams	or	observables.	Example	of	Combining	Streams	and	Observables://	Creating	two	streamsfinal	stream1	=	Stream.fromIterable([1,	2,	3]);final	stream2	=	Stream.fromIterable([4,	5,	6]);	//	Combining	the	streams	into	a	single	streamfinal	combinedStream	=
Rx.concat([stream1,	stream2]);	//	Subscribing	to	the	combined	stream	and	reacting	to	the	eventsfinal	subscription	=	combinedStream.listen((event)	{	print('Combined	event:	$event');});	//	Output:	Combined	event:	1,	Combined	event:	2,	...,	Combined	event:	6	In	this	example,	the	concat	operator	from	RxDart	combines	two	streams	into	a	single	stream,
merging	their	events	in	the	order	they	occur.	The	resulting	combined	stream	emits	events	from	both	stream1	and	stream2.	Advanced	Techniques	and	Best	PracticesThrottling	and	Debouncing:	Throttling	and	debouncing	are	techniques	used	to	control	the	rate	at	which	events	are	emitted.Throttling	limits	the	number	of	events	emitted	within	a
specified	time	interval.Debouncing	delays	emitting	events	until	a	specified	quiet	period	occurs,	discarding	any	previous	events	within	that	period.	Example	of	Throttling:	//	Creating	an	Observable	from	button	presses	final	buttonPresses	=	Observable(controller.stream);	//	Throttling	the	button	presses	to	emit	at	most	one	event	per	500	milliseconds
final	throttledButtonPresses	=	buttonPresses.throttleTime(Duration(milliseconds:	500));	//	Subscribing	to	the	throttled	button	presses	final	subscription	=	throttledButtonPresses.listen((event)	{	print('Button	pressed!');	});	//	Simulating	multiple	button	presses	for	(int	i	=	0;	i	<	10;	i++)	{	controller.add(true);	await
Future.delayed(Duration(milliseconds:	100));	}	//	Output:	Button	pressed!	Example	of	Debouncing:	//	Creating	an	Observable	from	search	queries	final	searchQueries	=	Observable(controller.stream);	//	Debouncing	the	search	queries	to	emit	events	only	after	500	milliseconds	of	quiet	period	final	debouncedSearchQueries	=
searchQueries.debounceTime(Duration(milliseconds:	500));	//	Subscribing	to	the	debounced	search	queries	final	subscription	=	debouncedSearchQueries.listen((query)	{	print('Search	query:	$query');	//	Perform	search	operation	here	});	//	Simulating	search	queries	controller.add('flutter');	await	Future.delayed(Duration(milliseconds:	200));
controller.add('rx');	await	Future.delayed(Duration(milliseconds:	200));	controller.add('dart');	await	Future.delayed(Duration(milliseconds:	800));	//	Output:	Search	query:	dart	Error	Handling	and	Retries:	RxDart	provides	operators	to	handle	errors	emitted	by	observables	or	streams.Error-handling	operators	like	onErrorResumeNext	or	catchError
allow	you	to	handle	errors	gracefully	and	provide	fallback	mechanisms.You	can	also	implement	retry	mechanisms	using	operators	like	retry	or	retryWhen	to	automatically	retry	failed	operations.	Example	of	Error	Handling	and	Retries:	//	Creating	an	Observable	from	a	network	request	final	request	=	Observable.fromFuture(fetchDataFromNetwork());
//	Handling	errors	and	providing	a	fallback	value	final	response	=	request.onErrorResumeNext(Observable.just('Fallback	response'));	//	Subscribing	to	the	response	final	subscription	=	response.listen((data)	{	print('Received	data:	$data');	},	onError:	(error)	{	print('Error	occurred:	$error');	});	//	Output:	Received	data:	Fallback	response	(in	case	of
error)	Memory	Management	and	Resource	Disposal:	It	is	essential	to	manage	resources	and	dispose	of	subscriptions	and	subjects	properly	to	avoid	memory	leaks.Use	the	takeUntil	or	takeWhile	operators	to	automatically	dispose	of	subscriptions	when	certain	conditions	are	met.Dispose	of	subscriptions	and	subjects	explicitly	using	the
subscription.cancel()	or	subject.close()	methods	when	they	are	no	longer	needed.	Example	of	Memory	Management	and	Resource	Disposal:	//	Creating	an	Observable	from	a	timer	final	timer	=	Observable(Stream.periodic(Duration(seconds:	1),	(value)	=>	value));	//	Subscribing	to	the	timer	and	automatically	disposing	of	the	subscription	after	5
seconds	final	subscription	=	timer.takeUntil(Observable.timer(null,	Duration(seconds:	5))).listen((value)	{	print('Timer	value:	$value');	});	//	Output:	Timer	value:	0,	Timer	value:	1,	Timer	value:	2,	Timer	value:	3,	Timer	value:	4	//	Disposing	of	the	subscription	explicitly	after	it	is	no	longer	needed	subscription.cancel();	Testing	and	Debugging	with
RxDart	Testing	and	debugging	are	crucial	aspects	of	any	software	development	process.	Here's	how	you	can	approach	testing	and	debugging	with	RxDart,	along	with	an	example:	Testing	with	RxDart:	RxDart	provides	various	utilities	and	techniques	to	test	observables,	streams,	and	operators.Use	the	TestWidgetsFlutterBinding.ensureInitialized()
method	to	initialize	the	test	environment	before	running	RxDart	tests.Utilize	the	TestStream	class	from	the	rxdart/testing.dart	package	to	create	testable	streams	and	observables.Use	test-specific	operators	like	materialize()	and	dematerialize()	to	convert	events	into	notifications	that	can	be	easily	asserted.	Example	of	Testing	with	RxDart:	import
'package:rxdart/rxdart.dart';	import	'package:rxdart/testing.dart';	import	'package:test/test.dart';	void	main()	{	test('Test	observable	emits	correct	values',	()	{	//	Initialize	the	test	environment	TestWidgetsFlutterBinding.ensureInitialized();	//	Create	a	TestStream	final	stream	=	TestStream();	//	Emit	values	to	the	stream	stream.emit(1);	stream.emit(2);
stream.emit(3);	stream.close();	//	Create	an	observable	from	the	TestStream	final	observable	=	Observable(stream);	//	Assert	the	emitted	values	expect(observable,	emitsInOrder([1,	2,	3]));	});	}	Debugging	with	RxDart:	RxDart	provides	debugging	operators	that	help	analyze	and	debug	observables	and	streams	during	development.The	doOnData()
operator	allows	you	to	inspect	each	emitted	data	item,	enabling	you	to	log	or	perform	other	debugging	operations.The	doOnError()	and	doOnDone()	operators	allow	you	to	handle	error	and	completion	events	respectively	for	debugging	purposes.	Example	of	Debugging	with	RxDart:	//	Creating	an	observable	from	a	list	final	observable	=
Observable.fromIterable([1,	2,	3,	4,	5]);	//	Adding	the	doOnData	operator	for	debugging	final	debugObservable	=	observable.doOnData((data)	{	print('Data:	$data');	});	//	Subscribing	to	the	debugObservable	final	subscription	=	debugObservable.listen((data)	{	print('Received	data:	$data');	},	onError:	(error)	{	print('Error	occurred:	$error');	},
onDone:	()	{	print('Stream	completed');	});	//	Output:	//	Data:	1	//	Received	data:	1	//	Data:	2	//	Received	data:	2	//	Data:	3	//	Received	data:	3	//	Data:	4	//	Received	data:	4	//	Data:	5	//	Received	data:	5	//	Stream	completed	By	applying	testing	and	debugging	techniques,	you	can	ensure	the	correctness	and	reliability	of	your	RxDart	code.	Test	your
observables	and	streams	using	the	provided	testing	utilities	and	leverage	debugging	operators	to	gain	insights	into	the	behavior	of	your	reactive	code	during	development	and	troubleshooting	processes.	Real-World	Example	In	this	example	we	will	build	a	fully	functional	app	that	search	a	world	from	JSON	API.	Step	-1	In	first	step	we	will	generate	a
model	for	our	JSON	API.Use	can	use	QuikeType.io	to	generate	it	just	paste	the	JSON	schema	and	you	have	the	model	@immutableclass	Words	{	final	List	names;	const	Words({	required	this.names,	});	Words	copyWith({	List?	names,	})	=>	Words(names:	names	??	this.names,);	factory	Words.fromJson(Map	json)	=>	Words(names:
List.from(json["names"].map((x)	=>	x)),);	Map	toJson()	=>	{	"names":	List.from(names.map((x)	=>	x)),	};}	This	code	provides	a	way	to	convert	Words	objects	to	JSON	and	vice	versa,	making	it	easy	to	serialize	and	deserialize	the	data	for	communication	or	storage	purposes.	Step	-2	Let's	build	a	heraricary	that	focuses	on	creating	of	classes
representing	different	search	result	states.	Each	class	represents	a	specific	state,	such	as	loading,	no	result,	error,	or	with	a	successful	result.import	'package:flutter/foundation.dart'	show	immutable;	@immutableabstract	class	SearchResult	{	const	SearchResult();}	@immutableclass	SearchResultLoading	implements	SearchResult	{	const
SearchResultLoading();}	@immutableclass	SearchResultNoResult	implements	SearchResult	{	const	SearchResultNoResult();}	@immutableclass	SearchResultWithError	implements	SearchResult	{	final	Object?	error;	const	SearchResultWithError(this.error);}	@immutableclass	SearchResultWithResult	implements	SearchResult	{	final	List	result;
const	SearchResultWithResult(this.result);}	Step	-	3	Let's	Write	code	that	demonstrates	and	performs	a	search	operation	on	a	list	of	words	fetched	from	an	API.	This	code	demonstrates	the	basic	steps	involved	in	performing	a	search	operation	using	a	remote	API,	caching	the	results,	and	extracting	the	matching	words	based	on	a	search	term.import
'dart:convert';	import	'package:http/http.dart'	as	http;	class	Api	{	List?	_words;	Api();	//	Step	-	3	Future	search(String	searchTerm)	async	{	final	term	=	searchTerm.trim().toLowerCase();	final	cachedResult	=	_extractWordsUsingSearchTerm(searchTerm);	if	(cachedResult	!=	null)	{	return	cachedResult;	}	//	api	calling	final	words	=	await	_getData("
_words	=	words;	return	_extractWordsUsingSearchTerm(term)	??	[];	}	//	Step	-	2	List?	_extractWordsUsingSearchTerm(String	word)	{	final	cachedWords	=	_words;	if	(cachedWords	!=	null)	{	List	result	=	[];	for	(final	worded	in	cachedWords)	{	if	(worded.contains(word.trim().toLowerCase()))	{	result.add(worded);	}	}	return	result;	}	else	{	return
null;	}	}	//	Step	-	1	//	Future	_getData(String	url)	=>	HttpClient()	//	.getUrl(Uri.parse(url))	//	.then((request)	=>	request.close())	//	.then((response)	=>	response.transform(utf8.decoder).join())	//	.then((jsonString)	=>	json.decode(jsonString)	as	List);	Future	_getData(String	url)	async	{	final	response	=	await	http.Client().get(Uri.parse(url));	final
parsed	=	jsonDecode(response.body)['names'];	List?	names	=	parsed	!=	null	?	List.from(parsed)	:	null;	return	names;	}}	//	work	only	on	String	not	listextension	TrimmedCaseInsensitiveContain	on	String	{	bool	trimmedContains(String	other)	=>	trim().toLowerCase().contains(other.trim().toLowerCase(),);}	Step	-	4	This	code	demonstrates	the	setup
of	a	reactive	search	bloc	using	RxDart.	It	establishes	a	bidirectional	communication	channel	for	searching	by	providing	a	sink	to	add	search	terms	and	a	stream	to	receive	search	results.	The	search	terms	undergo	stream	transformations	to	control	the	search	behavior,	and	the	results	are	emitted	as	a	stream	of	SearchResult	objects	with	different
states.	The	result	stream	is	created	by	chaining	several	stream	transformations	on	textChanges.	It	performs	the	following	operations:	-	distinct()	ensures	that	only	distinct	search	terms	are	processed.	-	debounceTime(const	Duration(milliseconds:	350))	delays	the	processing	of	the	search	term	stream,	allowing	a	brief	duration	(350	milliseconds)	of
inactivity	before	emitting	the	latest	search	term.	This	helps	to	reduce	unnecessary	API	calls	for	rapidly	changing	search	terms.	-	switchMap((String	searchTerm)	maps	each	search	term	to	a	stream	of	SearchResult	objects	based	on	the	search	operation.	If	the	search	term	is	empty,	it	immediately	emits	a	null	result.	Otherwise,	it	performs	the	actual
search	operation	using	the	api.search	method,	which	returns	a	Future>.	This	future	is	wrapped	using	Rx.fromCallable	and	then	delayed	by	1	second	using	delay	to	introduce	a	delay	before	emitting	the	result.	The	mapped	stream	is	further	transformed	using	map	to	convert	the	search	results	into	appropriate	SearchResult	objects
(SearchResultNoResult,	SearchResultWithResult,	or	SearchResultLoading)	based	on	the	conditions.	-	startWith(const	SearchResultLoading())	emits	a	loading	result	as	the	initial	value	when	the	search	begins.	-	onErrorReturnWith((error,	_)	=>	SearchResultWithError(error))	handles	any	errors	that	occur	during	the	search	operation	and	emits	a
SearchResultWithError	object.import	'dart:async';	import	'package:flutter/foundation.dart'	show	immutable;import	'package:infinite_words/bloc/api.dart';import	'package:infinite_words/bloc/search_result.dart';import	'package:rxdart/rxdart.dart';	@immutableclass	SearchBloc	{	final	Sink	search;	final	Stream	results;	void	dispose()	{	search.close();	}
factory	SearchBloc({required	Api	api})	{	final	textChanges	=	BehaviorSubject();	final	result	=	textChanges	.distinct()	.debounceTime(const	Duration(milliseconds:	350))	.switchMap((String	searchTerm)	{	if	(searchTerm.isEmpty)	{	return	Stream.value(null);	}	else	{	return	Rx.fromCallable(()	=>	api.search(searchTerm))	.delay(const	Duration(seconds:
1))	.map((results)	=>	results.isEmpty	?	const	SearchResultNoResult()	:	SearchResultWithResult(results),)	.startWith(const	SearchResultLoading())	.onErrorReturnWith((error,	_)	=>	SearchResultWithError(error));	}	});	return	SearchBloc._(search:	textChanges.sink,	results:	result,);	}	const	SearchBloc._({	required	this.search,	required	this.results,
});}	Step	-	5	UI	Development	Custom	widget	to	display	out	search	result	in	GridViewimport	'package:flutter/material.dart';	class	GridViewWidget	extends	StatelessWidget	{	const	GridViewWidget({	Key?	key,	required	this.results,	})	:	super(key:	key);	final	List	results;	@override	Widget	build(BuildContext	context)	{	return	Expanded(child:
GridView.builder(itemCount:	results.length,	gridDelegate:	const	SliverGridDelegateWithMaxCrossAxisExtent(maxCrossAxisExtent:	200,	childAspectRatio:	3	/	2,	crossAxisSpacing:	20,	mainAxisSpacing:	20),	itemBuilder:	(context,	index)	{	return	Container(alignment:	Alignment.center,	decoration:	BoxDecoration(color:	Colors.white,	borderRadius:
BorderRadius.circular(15)),	child:	Text(results[index],	textAlign:	TextAlign.center,	style:	const	TextStyle(fontSize:	20,	fontWeight:	FontWeight.bold),),);	},),);	}}	Step	-	6	This	code	provides	a	UI	representation	of	the	different	states	of	the	search	results	and	handles	the	appropriate	rendering	based	on	the	received	data.import
'package:flutter/material.dart';import	'package:infinite_words/bloc/search_result.dart';import	'package:infinite_words/widgets/grid_view_widget.dart';	class	SearchResultView	extends	StatelessWidget	{	final	Stream	searchResults;	const	SearchResultView({	Key?	key,	required	this.searchResults,	})	:	super(key:	key);	@override	Widget
build(BuildContext	context)	{	return	StreamBuilder(stream:	searchResults,	builder:	(BuildContext	context,	AsyncSnapshot	snapshot,)	{	if	(snapshot.hasData)	{	final	result	=	snapshot.data;	if	(result	is	SearchResultWithError)	{	return	const	Center(child:	Text('Error'));	}	else	if	(result	is	SearchResultLoading)	{	return	const	Center(child:
CircularProgressIndicator());	}	else	if	(result	is	SearchResultNoResult)	{	return	const	Center(child:	Text('No	Result	Found'));	}	else	if	(result	is	SearchResultWithResult)	{	final	results	=	result.result;	return	GridViewWidget(results:	results);	}	else	{	return	const	Center(child:	Text("Unknown	State"));	}	}	else	{	return	const	Center(child:	Text(
"Waiting.....",	style:	TextStyle(color:	Colors.white,	fontSize:	18),),);	}	},);	}}	Step	-7	This	code	sets	up	the	home	page	of	the	application	with	a	text	input	field	for	searching	words	and	displays	the	search	results	using	the	SearchResultView	widget.	The	SearchBloc	manages	the	search	functionality	and	emits	the	search	results	to	the	UI.import
'package:flutter/material.dart';import	'package:infinite_words/bloc/api.dart';import	'package:infinite_words/bloc/search_bloc.dart';import	'package:infinite_words/view/search_result_view.dart';	class	HomePage	extends	StatefulWidget	{	const	HomePage({Key?	key})	:	super(key:	key);	@override	State	createState()	=>	_HomePageState();}	class
_HomePageState	extends	State	{	late	final	SearchBloc	_bloc;	@override	void	initState()	{	_bloc	=	SearchBloc(api:	Api());	super.initState();	}	@override	void	dispose()	{	super.dispose();	_bloc.dispose();	}	@override	Widget	build(BuildContext	context)	{	return	Scaffold(backgroundColor:	Colors.black,	//	appBar:	AppBar(//	title:	const	Text('Search'),	//),
body:	Padding(padding:	const	EdgeInsets.all(10),	child:	Column(children:	[const	SizedBox(height:	50,),	TextField(decoration:	InputDecoration(border:	InputBorder.none,	filled:	true,	fillColor:	Colors.white,	contentPadding:	const	EdgeInsets.only(left:	14.0,	bottom:	6.0,	top:	8.0),	focusedBorder:	OutlineInputBorder(borderSide:	const
BorderSide(color:	Colors.grey),	borderRadius:	BorderRadius.circular(10.0),),	enabledBorder:	UnderlineInputBorder(borderSide:	const	BorderSide(color:	Colors.white),	borderRadius:	BorderRadius.circular(10.0),),	hintText:	"Write	a	word",	hintStyle:	const	TextStyle(fontSize:	20,	//	color:	Colors.white,)),	onChanged:	_bloc.search.add),	const
SizedBox(height:	10,),	SearchResultView(searchResults:	_bloc.results)],),),);	}}	SourceCode	Ayoub	Ali	Posted	on	May	30,	2023	Reactive	programming	is	a	popular	paradigm	that	enables	developers	to	build	highly	responsive	and	scalable	applications.	When	combined	with	the	Flutter	framework,	it	empowers	developers	to	create	dynamic	and
reactive	user	interfaces.	One	of	the	most	powerful	libraries	for	reactive	programming	in	Flutter	is	RxDart.	In	this	blog	post,	we	will	explore	the	fundamentals	of	reactive	programming	and	demonstrate	how	RxDart	can	be	leveraged	to	enhance	your	Flutter	applications.	Outline	Core	Concepts	of	Reactive	Programming	At	its	core,	reactive	programming
revolves	around	three	fundamental	concepts:	Observables:Observables	represent	a	sequence	of	values	that	can	change	over	time.	They	can	emit	data	or	events,	and	other	parts	of	the	application	can	subscribe	to	these	observables	to	be	notified	when	new	values	or	events	are	available.Streams:Streams	are	a	type	of	observables	in	reactive
programming.	They	provide	a	continuous	flow	of	data	or	events	over	time.	Developers	can	listen	to	streams	and	react	to	the	data	or	events	emitted	by	them.Data	Flow:Reactive	programming	encourages	a	unidirectional	data	flow,	where	changes	in	the	observables	trigger	updates	in	dependent	components	or	operations.	This	ensures	that	the
application	remains	responsive	and	efficiently	handles	changes	without	causing	unnecessary	side	effects.	By	leveraging	these	core	concepts,	reactive	programming	enables	developers	to	build	applications	that	can	react	to	user	interactions,	data	updates,	and	other	events	in	a	scalable	and	efficient	manner.	It	promotes	a	more	declarative	and	event-
driven	style	of	programming,	making	it	easier	to	handle	complex	asynchronous	operations	and	maintain	a	responsive	user	interface.	RxDart	Installation	and	Setup	To	install	RxDart	and	set	it	up	in	your	Flutter	project,	follow	these	steps:	Open	your	Flutter	project	in	an	IDE	or	text	editor.Open	the	pubspec.yaml	file	located	in	the	root	directory	of	your
Flutter	project.In	the	dependencies	section	of	the	pubspec.yaml	file,	add	the	following	line:dependencies:	rxdart:	^0.27.1	This	line	specifies	that	your	project	will	depend	on	the	RxDart	library	and	uses	version	0.27.1	(or	the	latest	version	available).	Save	the	pubspec.yaml	file.In	your	IDE	or	terminal,	run	the	following	command	to	fetch	and	install	the
RxDart	library:	This	command	will	download	the	RxDart	library	and	make	it	available	for	use	in	your	Flutter	project.	Once	the	installation	is	complete,	you	can	start	using	RxDart	in	your	Flutter	code.	Import	the	RxDart	package	in	the	relevant	files	where	you	intend	to	use	it:import	'package:rxdart/rxdart.dart';	You	are	now	ready	to	utilize	RxDart	and
its	reactive	programming	capabilities	in	your	Flutter	project.	Refer	to	the	RxDart	documentation	and	examples	to	learn	about	different	observables,	streams,	and	operators	provided	by	the	library.	Remember	to	import	the	necessary	classes	from	the	RxDart	package	whenever	you	need	to	use	them	in	your	code.	Note:	Make	sure	to	follow	the	Flutter
and	Dart	version	compatibility	requirements	specified	by	the	RxDart	library.	Key	concept	of	Observable,	Stream,	StreamController	and	Subjects	in	RxDart	Key	Concepts	in	RxDart:	Observable:	Observables	represent	a	stream	of	data	or	events	that	can	change	over	time.They	allow	you	to	emit	values	or	events	and	enable	other	parts	of	the	application
to	subscribe	and	react	to	those	emissions.Observables	can	be	created	from	various	sources	such	as	lists,	futures,	or	streams.	Example:	//	Creating	an	Observable	from	a	List	final	numbers	=	Observable.fromIterable([1,	2,	3,	4,	5]);	//	Subscribing	to	the	Observable	final	subscription	=	numbers.listen((number)	{	print('Received	number:	$number');	});	//
Output:	Received	number:	1,	Received	number:	2,	...	Stream	and	StreamController:	A	stream	represents	a	sequence	of	asynchronous	events.	It	is	a	core	concept	in	Dart's	async	programming	model.StreamController	acts	as	a	source	of	events	for	a	stream.	It	allows	you	to	add	events	to	the	stream	and	control	its	flow.Streams	provide	a	way	to	handle
asynchronous	data	and	enable	listening	to	events	emitted	by	the	stream.	Example:	//	Creating	a	StreamController	final	controller	=	StreamController();	//	Adding	events	to	the	stream	controller.add(1);	controller.add(2);	controller.add(3);	//	Listening	to	the	stream	final	subscription	=	controller.stream.listen((event)	{	print('Received	event:	$event');	});
//	Output:	Received	event:	1,	Received	event:	2,	...	Subjects:	Subjects	are	a	type	of	Observable	and	StreamController	combined.	They	can	act	as	both	a	source	of	events	and	a	stream	to	listen	to	those	events.RxDart	provides	different	types	of	subjects,	such	as	BehaviorSubject,	PublishSubject,	and	ReplaySubject,	each	with	unique
characteristics.Subjects	are	often	used	for	managing	state	and	broadcasting	events	within	reactive	programming.	Example:	//	Creating	a	BehaviorSubject	final	subject	=	BehaviorSubject();	//	Subscribing	to	the	BehaviorSubject	final	subscription	=	subject.listen((value)	{	print('Received	value:	$value');	});	//	Emitting	values	through	the	BehaviorSubject
subject.add(1);	subject.add(2);	subject.add(3);	//	Output:	Received	value:	1,	Received	value:	2,	...	Reactive	event	handling	Combining	streams	and	observables	in	RxDart	1.	Reactive	Event	Handling:	Reactive	event	handling	refers	to	the	ability	of	RxDart	to	handle	and	react	to	events	in	a	reactive	and	efficient	manner.	It	allows	you	to	listen	to	events
from	various	sources,	such	as	user	interactions,	network	responses,	or	timer	events,	and	perform	actions	based	on	those	events.	RxDart	provides	operators	and	techniques	to	handle	events	reactively,	enabling	you	to	build	responsive	and	dynamic	applications.	Example	of	Reactive	Event	Handling://	Creating	an	Observable	for	button	pressesfinal
buttonPresses	=	Observable(controller.stream);	//	Subscribing	to	button	presses	and	reacting	to	the	eventsfinal	subscription	=	buttonPresses.listen((event)	{	print('Button	pressed!');});	//	Simulating	button	presses	by	adding	events	to	the	streamcontroller.add(true);controller.add(false);	//	Output:	Button	pressed!,	Button	pressed!	2.	Combining
Streams	and	Observables:	Combining	streams	and	observables	in	RxDart	allows	you	to	merge,	combine,	or	transform	multiple	streams	or	observables	into	a	single	stream	or	observable.	This	capability	is	useful	when	you	need	to	handle	multiple	data	sources	or	perform	complex	operations	on	data	emitted	by	different	streams	or	observables.	Example
of	Combining	Streams	and	Observables://	Creating	two	streamsfinal	stream1	=	Stream.fromIterable([1,	2,	3]);final	stream2	=	Stream.fromIterable([4,	5,	6]);	//	Combining	the	streams	into	a	single	streamfinal	combinedStream	=	Rx.concat([stream1,	stream2]);	//	Subscribing	to	the	combined	stream	and	reacting	to	the	eventsfinal	subscription	=
combinedStream.listen((event)	{	print('Combined	event:	$event');});	//	Output:	Combined	event:	1,	Combined	event:	2,	...,	Combined	event:	6	In	this	example,	the	concat	operator	from	RxDart	combines	two	streams	into	a	single	stream,	merging	their	events	in	the	order	they	occur.	The	resulting	combined	stream	emits	events	from	both	stream1	and
stream2.	Advanced	Techniques	and	Best	PracticesThrottling	and	Debouncing:	Throttling	and	debouncing	are	techniques	used	to	control	the	rate	at	which	events	are	emitted.Throttling	limits	the	number	of	events	emitted	within	a	specified	time	interval.Debouncing	delays	emitting	events	until	a	specified	quiet	period	occurs,	discarding	any	previous
events	within	that	period.	Example	of	Throttling:	//	Creating	an	Observable	from	button	presses	final	buttonPresses	=	Observable(controller.stream);	//	Throttling	the	button	presses	to	emit	at	most	one	event	per	500	milliseconds	final	throttledButtonPresses	=	buttonPresses.throttleTime(Duration(milliseconds:	500));	//	Subscribing	to	the	throttled
button	presses	final	subscription	=	throttledButtonPresses.listen((event)	{	print('Button	pressed!');	});	//	Simulating	multiple	button	presses	for	(int	i	=	0;	i	<	10;	i++)	{	controller.add(true);	await	Future.delayed(Duration(milliseconds:	100));	}	//	Output:	Button	pressed!	Example	of	Debouncing:	//	Creating	an	Observable	from	search	queries	final
searchQueries	=	Observable(controller.stream);	//	Debouncing	the	search	queries	to	emit	events	only	after	500	milliseconds	of	quiet	period	final	debouncedSearchQueries	=	searchQueries.debounceTime(Duration(milliseconds:	500));	//	Subscribing	to	the	debounced	search	queries	final	subscription	=	debouncedSearchQueries.listen((query)	{
print('Search	query:	$query');	//	Perform	search	operation	here	});	//	Simulating	search	queries	controller.add('flutter');	await	Future.delayed(Duration(milliseconds:	200));	controller.add('rx');	await	Future.delayed(Duration(milliseconds:	200));	controller.add('dart');	await	Future.delayed(Duration(milliseconds:	800));	//	Output:	Search	query:	dart	Error
Handling	and	Retries:	RxDart	provides	operators	to	handle	errors	emitted	by	observables	or	streams.Error-handling	operators	like	onErrorResumeNext	or	catchError	allow	you	to	handle	errors	gracefully	and	provide	fallback	mechanisms.You	can	also	implement	retry	mechanisms	using	operators	like	retry	or	retryWhen	to	automatically	retry	failed
operations.	Example	of	Error	Handling	and	Retries:	//	Creating	an	Observable	from	a	network	request	final	request	=	Observable.fromFuture(fetchDataFromNetwork());	//	Handling	errors	and	providing	a	fallback	value	final	response	=	request.onErrorResumeNext(Observable.just('Fallback	response'));	//	Subscribing	to	the	response	final	subscription
=	response.listen((data)	{	print('Received	data:	$data');	},	onError:	(error)	{	print('Error	occurred:	$error');	});	//	Output:	Received	data:	Fallback	response	(in	case	of	error)	Memory	Management	and	Resource	Disposal:	It	is	essential	to	manage	resources	and	dispose	of	subscriptions	and	subjects	properly	to	avoid	memory	leaks.Use	the	takeUntil	or
takeWhile	operators	to	automatically	dispose	of	subscriptions	when	certain	conditions	are	met.Dispose	of	subscriptions	and	subjects	explicitly	using	the	subscription.cancel()	or	subject.close()	methods	when	they	are	no	longer	needed.	Example	of	Memory	Management	and	Resource	Disposal:	//	Creating	an	Observable	from	a	timer	final	timer	=
Observable(Stream.periodic(Duration(seconds:	1),	(value)	=>	value));	//	Subscribing	to	the	timer	and	automatically	disposing	of	the	subscription	after	5	seconds	final	subscription	=	timer.takeUntil(Observable.timer(null,	Duration(seconds:	5))).listen((value)	{	print('Timer	value:	$value');	});	//	Output:	Timer	value:	0,	Timer	value:	1,	Timer	value:	2,
Timer	value:	3,	Timer	value:	4	//	Disposing	of	the	subscription	explicitly	after	it	is	no	longer	needed	subscription.cancel();	Testing	and	Debugging	with	RxDart	Testing	and	debugging	are	crucial	aspects	of	any	software	development	process.	Here's	how	you	can	approach	testing	and	debugging	with	RxDart,	along	with	an	example:	Testing	with	RxDart:
RxDart	provides	various	utilities	and	techniques	to	test	observables,	streams,	and	operators.Use	the	TestWidgetsFlutterBinding.ensureInitialized()	method	to	initialize	the	test	environment	before	running	RxDart	tests.Utilize	the	TestStream	class	from	the	rxdart/testing.dart	package	to	create	testable	streams	and	observables.Use	test-specific
operators	like	materialize()	and	dematerialize()	to	convert	events	into	notifications	that	can	be	easily	asserted.	Example	of	Testing	with	RxDart:	import	'package:rxdart/rxdart.dart';	import	'package:rxdart/testing.dart';	import	'package:test/test.dart';	void	main()	{	test('Test	observable	emits	correct	values',	()	{	//	Initialize	the	test	environment
TestWidgetsFlutterBinding.ensureInitialized();	//	Create	a	TestStream	final	stream	=	TestStream();	//	Emit	values	to	the	stream	stream.emit(1);	stream.emit(2);	stream.emit(3);	stream.close();	//	Create	an	observable	from	the	TestStream	final	observable	=	Observable(stream);	//	Assert	the	emitted	values	expect(observable,	emitsInOrder([1,	2,	3]));	});
}	Debugging	with	RxDart:	RxDart	provides	debugging	operators	that	help	analyze	and	debug	observables	and	streams	during	development.The	doOnData()	operator	allows	you	to	inspect	each	emitted	data	item,	enabling	you	to	log	or	perform	other	debugging	operations.The	doOnError()	and	doOnDone()	operators	allow	you	to	handle	error	and
completion	events	respectively	for	debugging	purposes.	Example	of	Debugging	with	RxDart:	//	Creating	an	observable	from	a	list	final	observable	=	Observable.fromIterable([1,	2,	3,	4,	5]);	//	Adding	the	doOnData	operator	for	debugging	final	debugObservable	=	observable.doOnData((data)	{	print('Data:	$data');	});	//	Subscribing	to	the
debugObservable	final	subscription	=	debugObservable.listen((data)	{	print('Received	data:	$data');	},	onError:	(error)	{	print('Error	occurred:	$error');	},	onDone:	()	{	print('Stream	completed');	});	//	Output:	//	Data:	1	//	Received	data:	1	//	Data:	2	//	Received	data:	2	//	Data:	3	//	Received	data:	3	//	Data:	4	//	Received	data:	4	//	Data:	5	//	Received	data:
5	//	Stream	completed	By	applying	testing	and	debugging	techniques,	you	can	ensure	the	correctness	and	reliability	of	your	RxDart	code.	Test	your	observables	and	streams	using	the	provided	testing	utilities	and	leverage	debugging	operators	to	gain	insights	into	the	behavior	of	your	reactive	code	during	development	and	troubleshooting	processes.
Real-World	Example	In	this	example	we	will	build	a	fully	functional	app	that	search	a	world	from	JSON	API.	Step	-1	In	first	step	we	will	generate	a	model	for	our	JSON	API.Use	can	use	QuikeType.io	to	generate	it	just	paste	the	JSON	schema	and	you	have	the	model	@immutableclass	Words	{	final	List	names;	const	Words({	required	this.names,	});
Words	copyWith({	List?	names,	})	=>	Words(names:	names	??	this.names,);	factory	Words.fromJson(Map	json)	=>	Words(names:	List.from(json["names"].map((x)	=>	x)),);	Map	toJson()	=>	{	"names":	List.from(names.map((x)	=>	x)),	};}	This	code	provides	a	way	to	convert	Words	objects	to	JSON	and	vice	versa,	making	it	easy	to	serialize	and
deserialize	the	data	for	communication	or	storage	purposes.	Step	-2	Let's	build	a	heraricary	that	focuses	on	creating	of	classes	representing	different	search	result	states.	Each	class	represents	a	specific	state,	such	as	loading,	no	result,	error,	or	with	a	successful	result.import	'package:flutter/foundation.dart'	show	immutable;	@immutableabstract
class	SearchResult	{	const	SearchResult();}	@immutableclass	SearchResultLoading	implements	SearchResult	{	const	SearchResultLoading();}	@immutableclass	SearchResultNoResult	implements	SearchResult	{	const	SearchResultNoResult();}	@immutableclass	SearchResultWithError	implements	SearchResult	{	final	Object?	error;	const
SearchResultWithError(this.error);}	@immutableclass	SearchResultWithResult	implements	SearchResult	{	final	List	result;	const	SearchResultWithResult(this.result);}	Step	-	3	Let's	Write	code	that	demonstrates	and	performs	a	search	operation	on	a	list	of	words	fetched	from	an	API.	This	code	demonstrates	the	basic	steps	involved	in	performing	a
search	operation	using	a	remote	API,	caching	the	results,	and	extracting	the	matching	words	based	on	a	search	term.import	'dart:convert';	import	'package:http/http.dart'	as	http;	class	Api	{	List?	_words;	Api();	//	Step	-	3	Future	search(String	searchTerm)	async	{	final	term	=	searchTerm.trim().toLowerCase();	final	cachedResult	=
_extractWordsUsingSearchTerm(searchTerm);	if	(cachedResult	!=	null)	{	return	cachedResult;	}	//	api	calling	final	words	=	await	_getData("	_words	=	words;	return	_extractWordsUsingSearchTerm(term)	??	[];	}	//	Step	-	2	List?	_extractWordsUsingSearchTerm(String	word)	{	final	cachedWords	=	_words;	if	(cachedWords	!=	null)	{	List	result	=	[];
for	(final	worded	in	cachedWords)	{	if	(worded.contains(word.trim().toLowerCase()))	{	result.add(worded);	}	}	return	result;	}	else	{	return	null;	}	}	//	Step	-	1	//	Future	_getData(String	url)	=>	HttpClient()	//	.getUrl(Uri.parse(url))	//	.then((request)	=>	request.close())	//	.then((response)	=>	response.transform(utf8.decoder).join())	//	.then((jsonString)
=>	json.decode(jsonString)	as	List);	Future	_getData(String	url)	async	{	final	response	=	await	http.Client().get(Uri.parse(url));	final	parsed	=	jsonDecode(response.body)['names'];	List?	names	=	parsed	!=	null	?	List.from(parsed)	:	null;	return	names;	}}	//	work	only	on	String	not	listextension	TrimmedCaseInsensitiveContain	on	String	{	bool
trimmedContains(String	other)	=>	trim().toLowerCase().contains(other.trim().toLowerCase(),);}	Step	-	4	This	code	demonstrates	the	setup	of	a	reactive	search	bloc	using	RxDart.	It	establishes	a	bidirectional	communication	channel	for	searching	by	providing	a	sink	to	add	search	terms	and	a	stream	to	receive	search	results.	The	search	terms
undergo	stream	transformations	to	control	the	search	behavior,	and	the	results	are	emitted	as	a	stream	of	SearchResult	objects	with	different	states.	The	result	stream	is	created	by	chaining	several	stream	transformations	on	textChanges.	It	performs	the	following	operations:	-	distinct()	ensures	that	only	distinct	search	terms	are	processed.	-
debounceTime(const	Duration(milliseconds:	350))	delays	the	processing	of	the	search	term	stream,	allowing	a	brief	duration	(350	milliseconds)	of	inactivity	before	emitting	the	latest	search	term.	This	helps	to	reduce	unnecessary	API	calls	for	rapidly	changing	search	terms.	-	switchMap((String	searchTerm)	maps	each	search	term	to	a	stream	of
SearchResult	objects	based	on	the	search	operation.	If	the	search	term	is	empty,	it	immediately	emits	a	null	result.	Otherwise,	it	performs	the	actual	search	operation	using	the	api.search	method,	which	returns	a	Future>.	This	future	is	wrapped	using	Rx.fromCallable	and	then	delayed	by	1	second	using	delay	to	introduce	a	delay	before	emitting	the
result.	The	mapped	stream	is	further	transformed	using	map	to	convert	the	search	results	into	appropriate	SearchResult	objects	(SearchResultNoResult,	SearchResultWithResult,	or	SearchResultLoading)	based	on	the	conditions.	-	startWith(const	SearchResultLoading())	emits	a	loading	result	as	the	initial	value	when	the	search	begins.	-
onErrorReturnWith((error,	_)	=>	SearchResultWithError(error))	handles	any	errors	that	occur	during	the	search	operation	and	emits	a	SearchResultWithError	object.import	'dart:async';	import	'package:flutter/foundation.dart'	show	immutable;import	'package:infinite_words/bloc/api.dart';import	'package:infinite_words/bloc/search_result.dart';import
'package:rxdart/rxdart.dart';	@immutableclass	SearchBloc	{	final	Sink	search;	final	Stream	results;	void	dispose()	{	search.close();	}	factory	SearchBloc({required	Api	api})	{	final	textChanges	=	BehaviorSubject();	final	result	=	textChanges	.distinct()	.debounceTime(const	Duration(milliseconds:	350))	.switchMap((String	searchTerm)	{	if
(searchTerm.isEmpty)	{	return	Stream.value(null);	}	else	{	return	Rx.fromCallable(()	=>	api.search(searchTerm))	.delay(const	Duration(seconds:	1))	.map((results)	=>	results.isEmpty	?	const	SearchResultNoResult()	:	SearchResultWithResult(results),)	.startWith(const	SearchResultLoading())	.onErrorReturnWith((error,	_)	=>
SearchResultWithError(error));	}	});	return	SearchBloc._(search:	textChanges.sink,	results:	result,);	}	const	SearchBloc._({	required	this.search,	required	this.results,	});}	Step	-	5	UI	Development	Custom	widget	to	display	out	search	result	in	GridViewimport	'package:flutter/material.dart';	class	GridViewWidget	extends	StatelessWidget	{	const
GridViewWidget({	Key?	key,	required	this.results,	})	:	super(key:	key);	final	List	results;	@override	Widget	build(BuildContext	context)	{	return	Expanded(child:	GridView.builder(itemCount:	results.length,	gridDelegate:	const	SliverGridDelegateWithMaxCrossAxisExtent(maxCrossAxisExtent:	200,	childAspectRatio:	3	/	2,	crossAxisSpacing:	20,
mainAxisSpacing:	20),	itemBuilder:	(context,	index)	{	return	Container(alignment:	Alignment.center,	decoration:	BoxDecoration(color:	Colors.white,	borderRadius:	BorderRadius.circular(15)),	child:	Text(results[index],	textAlign:	TextAlign.center,	style:	const	TextStyle(fontSize:	20,	fontWeight:	FontWeight.bold),),);	},),);	}}	Step	-	6	This	code
provides	a	UI	representation	of	the	different	states	of	the	search	results	and	handles	the	appropriate	rendering	based	on	the	received	data.import	'package:flutter/material.dart';import	'package:infinite_words/bloc/search_result.dart';import	'package:infinite_words/widgets/grid_view_widget.dart';	class	SearchResultView	extends	StatelessWidget	{
final	Stream	searchResults;	const	SearchResultView({	Key?	key,	required	this.searchResults,	})	:	super(key:	key);	@override	Widget	build(BuildContext	context)	{	return	StreamBuilder(stream:	searchResults,	builder:	(BuildContext	context,	AsyncSnapshot	snapshot,)	{	if	(snapshot.hasData)	{	final	result	=	snapshot.data;	if	(result	is
SearchResultWithError)	{	return	const	Center(child:	Text('Error'));	}	else	if	(result	is	SearchResultLoading)	{	return	const	Center(child:	CircularProgressIndicator());	}	else	if	(result	is	SearchResultNoResult)	{	return	const	Center(child:	Text('No	Result	Found'));	}	else	if	(result	is	SearchResultWithResult)	{	final	results	=	result.result;	return
GridViewWidget(results:	results);	}	else	{	return	const	Center(child:	Text("Unknown	State"));	}	}	else	{	return	const	Center(child:	Text("Waiting.....",	style:	TextStyle(color:	Colors.white,	fontSize:	18),),);	}	},);	}}	Step	-7	This	code	sets	up	the	home	page	of	the	application	with	a	text	input	field	for	searching	words	and	displays	the	search	results
using	the	SearchResultView	widget.	The	SearchBloc	manages	the	search	functionality	and	emits	the	search	results	to	the	UI.import	'package:flutter/material.dart';import	'package:infinite_words/bloc/api.dart';import	'package:infinite_words/bloc/search_bloc.dart';import	'package:infinite_words/view/search_result_view.dart';	class	HomePage	extends
StatefulWidget	{	const	HomePage({Key?	key})	:	super(key:	key);	@override	State	createState()	=>	_HomePageState();}	class	_HomePageState	extends	State	{	late	final	SearchBloc	_bloc;	@override	void	initState()	{	_bloc	=	SearchBloc(api:	Api());	super.initState();	}	@override	void	dispose()	{	super.dispose();	_bloc.dispose();	}	@override	Widget
build(BuildContext	context)	{	return	Scaffold(backgroundColor:	Colors.black,	//	appBar:	AppBar(//	title:	const	Text('Search'),	//),	body:	Padding(padding:	const	EdgeInsets.all(10),	child:	Column(children:	[const	SizedBox(height:	50,),	TextField(decoration:	InputDecoration(border:	InputBorder.none,	filled:	true,	fillColor:	Colors.white,
contentPadding:	const	EdgeInsets.only(left:	14.0,	bottom:	6.0,	top:	8.0),	focusedBorder:	OutlineInputBorder(borderSide:	const	BorderSide(color:	Colors.grey),	borderRadius:	BorderRadius.circular(10.0),),	enabledBorder:	UnderlineInputBorder(borderSide:	const	BorderSide(color:	Colors.white),	borderRadius:	BorderRadius.circular(10.0),),	hintText:
"Write	a	word",	hintStyle:	const	TextStyle(fontSize:	20,	//	color:	Colors.white,)),	onChanged:	_bloc.search.add),	const	SizedBox(height:	10,),	SearchResultView(searchResults:	_bloc.results)],),),);	}}	SourceCodeDeveloping	highly	responsive,	fault-tolerant,	event-driven	asynchronous	applications	that	are	scalable	requires	a	different	way	of	thinking
from	the	traditional	synchronous	programming	architecture.This	is	why	the	reactive	programming	principle	exists.	It	uses	streams	to	build	these	types	of	reactive	applications.In	this	tutorial,	youll	use	RxDart,	a	Dart	implementation	of	the	reactive	programming	principle,	to	develop	Gravity	Pop,	a	very	simple	game	based	off	a	very	popular	block	falling
videogame.	In	this	game,	blocks	fall	and	disappear	if	a	row	is	filled	Along	the	way,	youll	learn:RxDart	streams.Extension	functions.Subjects.The	concept	of	Backpressure.	Getting	StartedClick	the	Download	Materials	button	at	the	top	or	bottom	of	this	tutorial	to	download	the	starter	project.	The	starter	project	has	a	few	models	to	represent	the	various
states/events	youll	be	manipulating	using	RxDart.	These	are:GameState:	An	enum	to	store	the	game	state:	whether	the	game	has	started,	is	playing	or	is	over.GameData:	A	model	that	represents	the	current	state	of	the	game	and	all	the	collected	tetriminos.Input:	A	model	representing	change	events	that	affect	the	current	tetrimino	in	play.	This
includes	xOffset,	yOffset	and	angle.Piece:	An	enum	that	represents	the	type	of	block	from	the	available	seven.Tetrimino:	represents	the	current	block	animating	in	the	screen.Note:	A	group	of	falling	blocks	is	also	known	as	a	tetrimino.Along	with	the	models,	here	are	some	other	things	to	note	about	the	starter	project:The	project	contains	utility
functions	for	common	use	cases.There	are	classes	for	the	board,	the	player	and	a	layer	that	only	handles	user	interactions.We	paint	each	tetrimino	using	the	custom	painter	class.Now,	get	packages	by	running	flutter	pub	get	in	your	terminal/PowerShell.	Then	build	and	run	to	see	the	starter	app:Tap	the	Play	button	to	enter	play	mode.	Youll	see	the
screen	below:Youll	notice	that	it	only	contains	a	white	screen;	there	are	no	blocks,	and	the	buttons	dont	work.	Youll	change	that	and	make	this	into	a	simple	game	using	Reactive	streams	in	RxDart.At	the	end,	you	will	get	to	see	a	game	like	this:Are	you	ready?	Time	to	get	stacking.The	Reactive	Programming	ParadigmAn	event	is	a	general	term	used	to
represent	the	press	of	a	button	or	any	of	the	many	sensors	in	your	device	recording	their	data.	Various	components	process	events	to	produce	something	meaningful	in	the	end,	to	make	updates	in	the	UI,	for	instance.But	this	process	is	not	a	one-time	deal.	As	long	as	events	are	produced,	the	process	repeats	itself.	A	stream	in	programming	is	this	flow
of	any	raw	input	event	to	a	useful	result:Above	is	a	basic	illustration	of	a	stream	showing	relation	between	a	source	and	a	sink.All	streams	have	two	required	components:	a	source	(for	example,	an	event)	and	a	sink	or	receiver	(a	logical	or	UI	component	that	can	consume	that	stream.)	Reactive	programming	uses	such	streams	as	a	backbone	to	build
applications.Flutter	offers	built-in	support	for	streams	using	the	Stream	class.	This	class	handles	creating	streams	from	various	sources	such	as	I/O	updates,	sensor	data	capture,	UI	event	capture	and	so	much	more.A	sink	can	be	any	component	that	has	the	power	to	consume	stream	events.	Moving	forward,	youll	use	StreamBuilder	to	consume
streams	and	update	UI.For	your	first	task,	open	lib/player.dart	and	replace	//TODO:	add	a	stream	builder	with	the	following	code	snippet:	//1child:	StreamBuilder(//2	//TODO:	replace	with	staticPlayerStream	stream:	_engine.blankPlayerStream,	//3	builder:	((context,	snapshot)	{	if	(snapshot.hasData)	{	if	(snapshot.data?.current	==	Piece.Empty)
return	const	SizedBox.shrink();	return	ClipRect(child:	CustomPaint(painter:	_getNextPiece(snapshot.data!,	_engine.extent.toDouble()),	child:	SizedBox(width:	_engine.effectiveWidth.toDouble(),	height:	_engine.effectiveHeight.toDouble(),),),);	}	return	const	SizedBox.shrink();	}),),Heres	whats	happening	in	the	preceding	code	snippets:You	used
Flutter	StreamBuilder	as	a	sink	to	accept	events	from	a	stream,	_engine.blankPlayerStream._engine.blankPlayerStream	creates	a	stream	that	returns	an	empty	stream	at	the	moment.	Youll	expand	on	this	as	you	get	further	into	the	tutorial.The	snapshot	variable	references	stream	events	and	processes	them.	In	this	case,	you	use	each	event	in	a	Text
widget.Build	and	run	the	app	and	you	will	see	the	same	white	board.	But	now	the	building	blocks	for	streams	are	in	place	with	the	source(stream	instances)	and	sink(StreamBuilder	widget).	At	this	point,	it	may	seem	trivial,	but	as	you	go	on	you	will	implement	more	features	of	the	reactive	programming	paradigm	using	RxDart.Creating	RxDart
StreamsDart	Stream	API	fulfils	the	basic	requirements	to	follow	the	reactive	programming	style.	RxDart	offers	various	new	features	that	increase	its	usefulness	in	real-world	applications	to	enhance	it	more.As	an	example	of	this,	consider	the	Stream.fromIterable()	constructor	returned	from	gridStateStream	in	lib/engine.dart.	As	simple	as	it	may	be,
you	can	improve	it	further	by	specifying	the	start	and	end	of	the	iterable	and	turn	each	numbers	in	between	into	events.The	RangeStream	stream	from	RxDart	fulfills	this	exact	usecase.	Open	lib/player.dart	and	replace	TODO:	replace	with	staticPlayerStream	and	the	line	beneath	it	with	the	following	code://TODO:	replace	with
animatingPlayerStreamstream:	_engine.staticPlayerStream(),Next,	open	lib/engine.dart	and	take	a	look	at	the	implementation	for	staticPlayerStream:return	RangeStream(0,	effectiveHeight	~/	extent	-	1).map((value)	=>	Tetrimino(current:	Piece.I,	origin:	Point(0,	value	*	extent.toDouble())));RangeStream	emits	numbers	within	its	input	range	as
events.	Each	event	is	mapped	into	a	tetrimino	object	in	the	above	code	snippet.Build	and	run	the	app	and	you	will	see	that	since	RangeStream	has	completed	emitting	all	its	events,	the	block	has	come	to	rest	at	the	bottom	of	the	board	which	is	represented	by	the	final	event	emitted	by	RangeStream.Along	with	RangeStream,	RxDart	also	offers	various
other	types	of	pre-built	streams.	Youll	see	more	of	them	as	you	continue	with	this	tutorial.Using	RxDart	ExtensionsThe	map	function	at	the	end	of	the	code	above	is	an	example	of	an	extension	function.	Extension	functions	extend	the	operations	you	can	apply	on	streams.	You	can	use	them	when	you	need	to	manipulate	an	event	before	it	reaches	the
sink.For	example,	what	if	you	only	need	odd	events	from	a	stream	that	emits	integer	values?	Or,	you	need	to	create	a	gap	between	each	event	emitted	in	a	stream.Thats	what	map	does	in	the	previous	code.	It	takes	each	integer	and	transforms	it	into	a	tetrimino.	These	functions	have	the	power	to	transform	the	emitted	events	in	any	shape	or	form	and
can	even	create	other	streams	from	the	events.Note:	A	higher-order	stream	is	a	special	stream	that	emits	other	streams.Lets	make	the	previous	example	a	bit	more	exciting	using	interval.	The	interval	function	emits	events	of	the	stream	after	the	specified	time	interval.	Open	lib/player.dart	and	replace	//TODO:	replace	with	animatingPlayerStream	and
the	code	statement	below	it	with	the	following://TODO:	replace	with	animatingPlayerWithCompletionStreamstream:	_engine.animatingPlayerStream(),Check	staticPlayerStream	in	lib/engine.dart	to	see	how	you	used	the	interval	extension.return	RangeStream(0,	effectiveHeight	~/	extent	-	1)	.interval(const	Duration(milliseconds:	500))	.map((value)	=>
Tetrimino(current:	Piece.I,	origin:	Point(0,	value	*	extent.toDouble())));The	only	difference	between	this	RangeStream	and	the	previous	stream	is	the	addition	of	the	interval	extension	that	emits	each	event	from	its	input	stream	in	predefined	intervals,	500	milliseconds	in	this	case.	Build	and	run	the	app	now.	You	will	now	see	the	block	fall	in	intervals
of	500	ms.	As	you	can	see,	youre	not	limited	to	just	one	extension	function	between	the	source	and	a	sink.	You	can	chain	multiple	extension	functions	to	manipulate	the	data	between	the	source	and	the	sink.	Chaining	various	functions	one	after	the	other	is	an	important	part	of	reactive	programming,	used	to	achieve	high	degrees	of	data
manipulation.This	short	tutorial	shows	how	to	implement	search	with	RxDart	in	Flutter.We	will	use	the	GitHub	Search	API,	but	the	same	concepts	are	valid	for	any	other	search	REST	APIs.Our	goal	is	to	have	a	good	search	user	experience,	without	putting	too	much	load	on	the	server,	or	compromising	bandwidth	and	battery	life	on	the	client.GitHub
Search	Example	AppSo	let's	get	started	by	looking	at	a	simple	working	app.This	uses	the	SearchDelegate	class	to	show	a	list	of	users	matching	the	input	search	query:In	order	to	build	this	we	need	a	few	components:a	GitHubSearchAPIWrapper	class	to	pull	the	data	from	the	GitHub	REST	APIa	GitHubSearchResult	model	class	that	contains	the	API
response	dataa	GitHubSearchDelegate	class	that	shows	the	search	UI	with	a	grid	of	resultsa	GitHubSearchService	class	with	all	the	logic	for	wiring	up	the	API	wrapper	with	the	UIHere's	how	everything	is	connected:This	is	a	short	tutorial,	so	we	will	focus	only	on	the	GitHubSearchService	class.But	you	can	check	the	full	source	code	in	GitHub	for	all
the	remaining	details.GitHubSearchServiceLet's	start	with	some	code	that	represents	a	starting	point	for	this	class:class	GitHubSearchService	{	GitHubSearchService({@required	this.apiWrapper});	final	GitHubSearchAPIWrapper	apiWrapper;	//	Input	stream	(search	terms)	final	_searchTerms	=	BehaviorSubject();	void	searchUser(String	query)	=>
_searchTerms.add(query);	//	Output	stream	(search	results)	final	_results	=	BehaviorSubject();	Stream	get	results	=>	_results.stream;	void	dispose()	{	_results.close();	_searchTerms.close();	}}We	have	an	input	stream	for	the	search	terms	(generated	as	we	type	on	the	search	box),	and	an	output	stream	for	the	result	data	(shown	as	a	grid	of	items	in
the	UI).This	class	takes	a	GitHubSearchAPIWrapper	as	a	constructor	argument.And	we	need	to	work	out	how	to	add	values	to	the	output	stream	when	the	input	changes.Mapping	inputs	to	outputs:	first	attemptAs	a	first	attempt,	let's	add	a	listener	to	the	_searchTerms	stream:GitHubSearchService({@required	this.apiWrapper})	{
_searchTerms.listen((query)	async	{	print('searching:	$query');	//	get	new	result	from	the	api	final	result	=	await	apiWrapper.searchUser(query);	print('received	result	for:	$query');	//	add	to	the	output	stream	_results.add(result);	});}Every	time	the	search	query	changes,	this	code	calls	the	API	and	adds	the	result	to	the	output	stream.While	this
approach	seems	logical,	it	doesn't	work	very	well	in	practice.Why?	Because	there	is	no	guarantee	that	the	results	come	back	in	the	same	order	as	the	search	terms.This	is	a	problem	when	we	have	an	unreliable	connection,	and	can	lead	to	our-of-order	results	and	a	bad	user	experience://	example	logsearching:	bsearching:	bisearching:	bizsearching:
bizzsearching:	bizz8searching:	bizz84received	result	for:	breceived	result	for:	bireceived	result	for:	bizzreceived	result	for:	bizz8received	result	for:	bizz84received	result	for:	bizasyncMapLet's	try	using	the	asyncMap	operator	instead:GitHubSearchService({@required	this.apiWrapper})	{	_results	=	_searchTerms.asyncMap((query)	async	{
print('searching:	$query');	return	await	apiWrapper.searchUser(query);	});	//	discard	previous	events}//	To	make	this	work,	`_results`	is	now	decleared	as	a	`Stream`	Stream	_results;asyncMap	guarantees	that	the	output	events	are	emitted	in	the	same	order	as	the	inputs.This	solution	solves	the	out-of-order	problem,	but	it	has	one	major	drawback.If
one	of	the	output	arrives	late,	then	all	the	subsequent	outputs	are	delayed	too.Instead,	we	should	discard	any	in-flight	requests	as	soon	as	the	search	query	changes.This	can	be	done	with	the	switchMap	operator.switchMapswitchMap	does	the	right	thing	for	us,	and	can	be	used	like	this:GitHubSearchService({@required	this.apiWrapper})	{	_results
=	_searchTerms.switchMap((query)	async*	{	print('searching:	$query');	yield	await	apiWrapper.searchUser(query);	});	//	discard	previous	events}Note	that	in	this	case	we're	using	a	stream	generator	with	the	async*	syntax.With	this	setup,	we	can	discard	any	in-flight	requests	as	soon	as	a	new	search	term	comes	in.But	there	is	still	one	problem	that
is	particularly	noticeable	with	the	GitHub	Search	API.If	we	submit	too	many	queries	too	quickly,	we	get	a	"rate	limit	exceeded"	error:{	"message":	"API	rate	limit	exceeded	for	82.37.171.3.	(But	here's	the	good	news:	Authenticated	requests	get	a	higher	rate	limit.	Check	out	the	documentation	for	more	details.)",	"documentation_url":	"
}debounceDebounce	alleviates	pressure	on	the	server	by	putting	all	input	events	"on	hold"	for	a	given	duration.We	can	easily	debounce	the	input	stream	by	adding	one	line:_results	=	_searchTerms	.debounce((_)	=>	TimerStream(true,	Duration(milliseconds:	500)))	.switchMap((query)	async*	{	print('searching:	$query');	yield	await
apiWrapper.searchUser(query);});	//	discard	previous	eventsWe	can	control	the	debounce	duration	to	our	liking	(500ms	is	a	good	default	value).And	there	we	have	it!	An	efficient	search	implementation	that	feels	snappy,	without	overloading	the	server	or	the	client.CreditsThis	tutorial	was	heavily	inspired	by	this	talk	by	Brian	Egan	&	Filip	Hracek	at
ReactiveConf	2018:ReactiveConf	2018	-	Brian	Egan	&	Filip	Hracek:	Practical	Rx	with	FlutterThe	full	source	code	is	available	for	the	GitHub	search	example	-	feel	free	to	use	this	as	reference	in	your	own	apps.Happy	coding!	Ayoub	Ali	Posted	on	May	30,	2023	Reactive	programming	is	a	popular	paradigm	that	enables	developers	to	build	highly
responsive	and	scalable	applications.	When	combined	with	the	Flutter	framework,	it	empowers	developers	to	create	dynamic	and	reactive	user	interfaces.	One	of	the	most	powerful	libraries	for	reactive	programming	in	Flutter	is	RxDart.	In	this	blog	post,	we	will	explore	the	fundamentals	of	reactive	programming	and	demonstrate	how	RxDart	can	be
leveraged	to	enhance	your	Flutter	applications.	Outline	Core	Concepts	of	Reactive	Programming	At	its	core,	reactive	programming	revolves	around	three	fundamental	concepts:	Observables:Observables	represent	a	sequence	of	values	that	can	change	over	time.	They	can	emit	data	or	events,	and	other	parts	of	the	application	can	subscribe	to	these
observables	to	be	notified	when	new	values	or	events	are	available.Streams:Streams	are	a	type	of	observables	in	reactive	programming.	They	provide	a	continuous	flow	of	data	or	events	over	time.	Developers	can	listen	to	streams	and	react	to	the	data	or	events	emitted	by	them.Data	Flow:Reactive	programming	encourages	a	unidirectional	data	flow,
where	changes	in	the	observables	trigger	updates	in	dependent	components	or	operations.	This	ensures	that	the	application	remains	responsive	and	efficiently	handles	changes	without	causing	unnecessary	side	effects.	By	leveraging	these	core	concepts,	reactive	programming	enables	developers	to	build	applications	that	can	react	to	user
interactions,	data	updates,	and	other	events	in	a	scalable	and	efficient	manner.	It	promotes	a	more	declarative	and	event-driven	style	of	programming,	making	it	easier	to	handle	complex	asynchronous	operations	and	maintain	a	responsive	user	interface.	RxDart	Installation	and	Setup	To	install	RxDart	and	set	it	up	in	your	Flutter	project,	follow	these
steps:	Open	your	Flutter	project	in	an	IDE	or	text	editor.Open	the	pubspec.yaml	file	located	in	the	root	directory	of	your	Flutter	project.In	the	dependencies	section	of	the	pubspec.yaml	file,	add	the	following	line:dependencies:	rxdart:	^0.27.1	This	line	specifies	that	your	project	will	depend	on	the	RxDart	library	and	uses	version	0.27.1	(or	the	latest
version	available).	Save	the	pubspec.yaml	file.In	your	IDE	or	terminal,	run	the	following	command	to	fetch	and	install	the	RxDart	library:	This	command	will	download	the	RxDart	library	and	make	it	available	for	use	in	your	Flutter	project.	Once	the	installation	is	complete,	you	can	start	using	RxDart	in	your	Flutter	code.	Import	the	RxDart	package	in
the	relevant	files	where	you	intend	to	use	it:import	'package:rxdart/rxdart.dart';	You	are	now	ready	to	utilize	RxDart	and	its	reactive	programming	capabilities	in	your	Flutter	project.	Refer	to	the	RxDart	documentation	and	examples	to	learn	about	different	observables,	streams,	and	operators	provided	by	the	library.	Remember	to	import	the
necessary	classes	from	the	RxDart	package	whenever	you	need	to	use	them	in	your	code.	Note:	Make	sure	to	follow	the	Flutter	and	Dart	version	compatibility	requirements	specified	by	the	RxDart	library.	Key	concept	of	Observable,	Stream,	StreamController	and	Subjects	in	RxDart	Key	Concepts	in	RxDart:	Observable:	Observables	represent	a
stream	of	data	or	events	that	can	change	over	time.They	allow	you	to	emit	values	or	events	and	enable	other	parts	of	the	application	to	subscribe	and	react	to	those	emissions.Observables	can	be	created	from	various	sources	such	as	lists,	futures,	or	streams.	Example:	//	Creating	an	Observable	from	a	List	final	numbers	=	Observable.fromIterable([1,
2,	3,	4,	5]);	//	Subscribing	to	the	Observable	final	subscription	=	numbers.listen((number)	{	print('Received	number:	$number');	});	//	Output:	Received	number:	1,	Received	number:	2,	...	Stream	and	StreamController:	A	stream	represents	a	sequence	of	asynchronous	events.	It	is	a	core	concept	in	Dart's	async	programming	model.StreamController
acts	as	a	source	of	events	for	a	stream.	It	allows	you	to	add	events	to	the	stream	and	control	its	flow.Streams	provide	a	way	to	handle	asynchronous	data	and	enable	listening	to	events	emitted	by	the	stream.	Example:	//	Creating	a	StreamController	final	controller	=	StreamController();	//	Adding	events	to	the	stream	controller.add(1);
controller.add(2);	controller.add(3);	//	Listening	to	the	stream	final	subscription	=	controller.stream.listen((event)	{	print('Received	event:	$event');	});	//	Output:	Received	event:	1,	Received	event:	2,	...	Subjects:	Subjects	are	a	type	of	Observable	and	StreamController	combined.	They	can	act	as	both	a	source	of	events	and	a	stream	to	listen	to	those
events.RxDart	provides	different	types	of	subjects,	such	as	BehaviorSubject,	PublishSubject,	and	ReplaySubject,	each	with	unique	characteristics.Subjects	are	often	used	for	managing	state	and	broadcasting	events	within	reactive	programming.	Example:	//	Creating	a	BehaviorSubject	final	subject	=	BehaviorSubject();	//	Subscribing	to	the
BehaviorSubject	final	subscription	=	subject.listen((value)	{	print('Received	value:	$value');	});	//	Emitting	values	through	the	BehaviorSubject	subject.add(1);	subject.add(2);	subject.add(3);	//	Output:	Received	value:	1,	Received	value:	2,	...	Reactive	event	handling	Combining	streams	and	observables	in	RxDart	1.	Reactive	Event	Handling:	Reactive
event	handling	refers	to	the	ability	of	RxDart	to	handle	and	react	to	events	in	a	reactive	and	efficient	manner.	It	allows	you	to	listen	to	events	from	various	sources,	such	as	user	interactions,	network	responses,	or	timer	events,	and	perform	actions	based	on	those	events.	RxDart	provides	operators	and	techniques	to	handle	events	reactively,	enabling
you	to	build	responsive	and	dynamic	applications.	Example	of	Reactive	Event	Handling://	Creating	an	Observable	for	button	pressesfinal	buttonPresses	=	Observable(controller.stream);	//	Subscribing	to	button	presses	and	reacting	to	the	eventsfinal	subscription	=	buttonPresses.listen((event)	{	print('Button	pressed!');});	//	Simulating	button	presses
by	adding	events	to	the	streamcontroller.add(true);controller.add(false);	//	Output:	Button	pressed!,	Button	pressed!	2.	Combining	Streams	and	Observables:	Combining	streams	and	observables	in	RxDart	allows	you	to	merge,	combine,	or	transform	multiple	streams	or	observables	into	a	single	stream	or	observable.	This	capability	is	useful	when	you
need	to	handle	multiple	data	sources	or	perform	complex	operations	on	data	emitted	by	different	streams	or	observables.	Example	of	Combining	Streams	and	Observables://	Creating	two	streamsfinal	stream1	=	Stream.fromIterable([1,	2,	3]);final	stream2	=	Stream.fromIterable([4,	5,	6]);	//	Combining	the	streams	into	a	single	streamfinal
combinedStream	=	Rx.concat([stream1,	stream2]);	//	Subscribing	to	the	combined	stream	and	reacting	to	the	eventsfinal	subscription	=	combinedStream.listen((event)	{	print('Combined	event:	$event');});	//	Output:	Combined	event:	1,	Combined	event:	2,	...,	Combined	event:	6	In	this	example,	the	concat	operator	from	RxDart	combines	two	streams
into	a	single	stream,	merging	their	events	in	the	order	they	occur.	The	resulting	combined	stream	emits	events	from	both	stream1	and	stream2.	Advanced	Techniques	and	Best	PracticesThrottling	and	Debouncing:	Throttling	and	debouncing	are	techniques	used	to	control	the	rate	at	which	events	are	emitted.Throttling	limits	the	number	of	events
emitted	within	a	specified	time	interval.Debouncing	delays	emitting	events	until	a	specified	quiet	period	occurs,	discarding	any	previous	events	within	that	period.	Example	of	Throttling:	//	Creating	an	Observable	from	button	presses	final	buttonPresses	=	Observable(controller.stream);	//	Throttling	the	button	presses	to	emit	at	most	one	event	per	500
milliseconds	final	throttledButtonPresses	=	buttonPresses.throttleTime(Duration(milliseconds:	500));	//	Subscribing	to	the	throttled	button	presses	final	subscription	=	throttledButtonPresses.listen((event)	{	print('Button	pressed!');	});	//	Simulating	multiple	button	presses	for	(int	i	=	0;	i	<	10;	i++)	{	controller.add(true);	await
Future.delayed(Duration(milliseconds:	100));	}	//	Output:	Button	pressed!	Example	of	Debouncing:	//	Creating	an	Observable	from	search	queries	final	searchQueries	=	Observable(controller.stream);	//	Debouncing	the	search	queries	to	emit	events	only	after	500	milliseconds	of	quiet	period	final	debouncedSearchQueries	=
searchQueries.debounceTime(Duration(milliseconds:	500));	//	Subscribing	to	the	debounced	search	queries	final	subscription	=	debouncedSearchQueries.listen((query)	{	print('Search	query:	$query');	//	Perform	search	operation	here	});	//	Simulating	search	queries	controller.add('flutter');	await	Future.delayed(Duration(milliseconds:	200));
controller.add('rx');	await	Future.delayed(Duration(milliseconds:	200));	controller.add('dart');	await	Future.delayed(Duration(milliseconds:	800));	//	Output:	Search	query:	dart	Error	Handling	and	Retries:	RxDart	provides	operators	to	handle	errors	emitted	by	observables	or	streams.Error-handling	operators	like	onErrorResumeNext	or	catchError
allow	you	to	handle	errors	gracefully	and	provide	fallback	mechanisms.You	can	also	implement	retry	mechanisms	using	operators	like	retry	or	retryWhen	to	automatically	retry	failed	operations.	Example	of	Error	Handling	and	Retries:	//	Creating	an	Observable	from	a	network	request	final	request	=	Observable.fromFuture(fetchDataFromNetwork());
//	Handling	errors	and	providing	a	fallback	value	final	response	=	request.onErrorResumeNext(Observable.just('Fallback	response'));	//	Subscribing	to	the	response	final	subscription	=	response.listen((data)	{	print('Received	data:	$data');	},	onError:	(error)	{	print('Error	occurred:	$error');	});	//	Output:	Received	data:	Fallback	response	(in	case	of
error)	Memory	Management	and	Resource	Disposal:	It	is	essential	to	manage	resources	and	dispose	of	subscriptions	and	subjects	properly	to	avoid	memory	leaks.Use	the	takeUntil	or	takeWhile	operators	to	automatically	dispose	of	subscriptions	when	certain	conditions	are	met.Dispose	of	subscriptions	and	subjects	explicitly	using	the
subscription.cancel()	or	subject.close()	methods	when	they	are	no	longer	needed.	Example	of	Memory	Management	and	Resource	Disposal:	//	Creating	an	Observable	from	a	timer	final	timer	=	Observable(Stream.periodic(Duration(seconds:	1),	(value)	=>	value));	//	Subscribing	to	the	timer	and	automatically	disposing	of	the	subscription	after	5
seconds	final	subscription	=	timer.takeUntil(Observable.timer(null,	Duration(seconds:	5))).listen((value)	{	print('Timer	value:	$value');	});	//	Output:	Timer	value:	0,	Timer	value:	1,	Timer	value:	2,	Timer	value:	3,	Timer	value:	4	//	Disposing	of	the	subscription	explicitly	after	it	is	no	longer	needed	subscription.cancel();	Testing	and	Debugging	with
RxDart	Testing	and	debugging	are	crucial	aspects	of	any	software	development	process.	Here's	how	you	can	approach	testing	and	debugging	with	RxDart,	along	with	an	example:	Testing	with	RxDart:	RxDart	provides	various	utilities	and	techniques	to	test	observables,	streams,	and	operators.Use	the	TestWidgetsFlutterBinding.ensureInitialized()
method	to	initialize	the	test	environment	before	running	RxDart	tests.Utilize	the	TestStream	class	from	the	rxdart/testing.dart	package	to	create	testable	streams	and	observables.Use	test-specific	operators	like	materialize()	and	dematerialize()	to	convert	events	into	notifications	that	can	be	easily	asserted.	Example	of	Testing	with	RxDart:	import
'package:rxdart/rxdart.dart';	import	'package:rxdart/testing.dart';	import	'package:test/test.dart';	void	main()	{	test('Test	observable	emits	correct	values',	()	{	//	Initialize	the	test	environment	TestWidgetsFlutterBinding.ensureInitialized();	//	Create	a	TestStream	final	stream	=	TestStream();	//	Emit	values	to	the	stream	stream.emit(1);	stream.emit(2);
stream.emit(3);	stream.close();	//	Create	an	observable	from	the	TestStream	final	observable	=	Observable(stream);	//	Assert	the	emitted	values	expect(observable,	emitsInOrder([1,	2,	3]));	});	}	Debugging	with	RxDart:	RxDart	provides	debugging	operators	that	help	analyze	and	debug	observables	and	streams	during	development.The	doOnData()
operator	allows	you	to	inspect	each	emitted	data	item,	enabling	you	to	log	or	perform	other	debugging	operations.The	doOnError()	and	doOnDone()	operators	allow	you	to	handle	error	and	completion	events	respectively	for	debugging	purposes.	Example	of	Debugging	with	RxDart:	//	Creating	an	observable	from	a	list	final	observable	=
Observable.fromIterable([1,	2,	3,	4,	5]);	//	Adding	the	doOnData	operator	for	debugging	final	debugObservable	=	observable.doOnData((data)	{	print('Data:	$data');	});	//	Subscribing	to	the	debugObservable	final	subscription	=	debugObservable.listen((data)	{	print('Received	data:	$data');	},	onError:	(error)	{	print('Error	occurred:	$error');	},
onDone:	()	{	print('Stream	completed');	});	//	Output:	//	Data:	1	//	Received	data:	1	//	Data:	2	//	Received	data:	2	//	Data:	3	//	Received	data:	3	//	Data:	4	//	Received	data:	4	//	Data:	5	//	Received	data:	5	//	Stream	completed	By	applying	testing	and	debugging	techniques,	you	can	ensure	the	correctness	and	reliability	of	your	RxDart	code.	Test	your
observables	and	streams	using	the	provided	testing	utilities	and	leverage	debugging	operators	to	gain	insights	into	the	behavior	of	your	reactive	code	during	development	and	troubleshooting	processes.	Real-World	Example	In	this	example	we	will	build	a	fully	functional	app	that	search	a	world	from	JSON	API.	Step	-1	In	first	step	we	will	generate	a
model	for	our	JSON	API.Use	can	use	QuikeType.io	to	generate	it	just	paste	the	JSON	schema	and	you	have	the	model	@immutableclass	Words	{	final	List	names;	const	Words({	required	this.names,	});	Words	copyWith({	List?	names,	})	=>	Words(names:	names	??	this.names,);	factory	Words.fromJson(Map	json)	=>	Words(names:
List.from(json["names"].map((x)	=>	x)),);	Map	toJson()	=>	{	"names":	List.from(names.map((x)	=>	x)),	};}	This	code	provides	a	way	to	convert	Words	objects	to	JSON	and	vice	versa,	making	it	easy	to	serialize	and	deserialize	the	data	for	communication	or	storage	purposes.	Step	-2	Let's	build	a	heraricary	that	focuses	on	creating	of	classes
representing	different	search	result	states.	Each	class	represents	a	specific	state,	such	as	loading,	no	result,	error,	or	with	a	successful	result.import	'package:flutter/foundation.dart'	show	immutable;	@immutableabstract	class	SearchResult	{	const	SearchResult();}	@immutableclass	SearchResultLoading	implements	SearchResult	{	const
SearchResultLoading();}	@immutableclass	SearchResultNoResult	implements	SearchResult	{	const	SearchResultNoResult();}	@immutableclass	SearchResultWithError	implements	SearchResult	{	final	Object?	error;	const	SearchResultWithError(this.error);}	@immutableclass	SearchResultWithResult	implements	SearchResult	{	final	List	result;
const	SearchResultWithResult(this.result);}	Step	-	3	Let's	Write	code	that	demonstrates	and	performs	a	search	operation	on	a	list	of	words	fetched	from	an	API.	This	code	demonstrates	the	basic	steps	involved	in	performing	a	search	operation	using	a	remote	API,	caching	the	results,	and	extracting	the	matching	words	based	on	a	search	term.import
'dart:convert';	import	'package:http/http.dart'	as	http;	class	Api	{	List?	_words;	Api();	//	Step	-	3	Future	search(String	searchTerm)	async	{	final	term	=	searchTerm.trim().toLowerCase();	final	cachedResult	=	_extractWordsUsingSearchTerm(searchTerm);	if	(cachedResult	!=	null)	{	return	cachedResult;	}	//	api	calling	final	words	=	await	_getData("

_words	=	words;	return	_extractWordsUsingSearchTerm(term)	??	[];	}	//	Step	-	2	List?	_extractWordsUsingSearchTerm(String	word)	{	final	cachedWords	=	_words;	if	(cachedWords	!=	null)	{	List	result	=	[];	for	(final	worded	in	cachedWords)	{	if	(worded.contains(word.trim().toLowerCase()))	{	result.add(worded);	}	}	return	result;	}	else	{	return
null;	}	}	//	Step	-	1	//	Future	_getData(String	url)	=>	HttpClient()	//	.getUrl(Uri.parse(url))	//	.then((request)	=>	request.close())	//	.then((response)	=>	response.transform(utf8.decoder).join())	//	.then((jsonString)	=>	json.decode(jsonString)	as	List);	Future	_getData(String	url)	async	{	final	response	=	await	http.Client().get(Uri.parse(url));	final
parsed	=	jsonDecode(response.body)['names'];	List?	names	=	parsed	!=	null	?	List.from(parsed)	:	null;	return	names;	}}	//	work	only	on	String	not	listextension	TrimmedCaseInsensitiveContain	on	String	{	bool	trimmedContains(String	other)	=>	trim().toLowerCase().contains(other.trim().toLowerCase(),);}	Step	-	4	This	code	demonstrates	the	setup
of	a	reactive	search	bloc	using	RxDart.	It	establishes	a	bidirectional	communication	channel	for	searching	by	providing	a	sink	to	add	search	terms	and	a	stream	to	receive	search	results.	The	search	terms	undergo	stream	transformations	to	control	the	search	behavior,	and	the	results	are	emitted	as	a	stream	of	SearchResult	objects	with	different
states.	The	result	stream	is	created	by	chaining	several	stream	transformations	on	textChanges.	It	performs	the	following	operations:	-	distinct()	ensures	that	only	distinct	search	terms	are	processed.	-	debounceTime(const	Duration(milliseconds:	350))	delays	the	processing	of	the	search	term	stream,	allowing	a	brief	duration	(350	milliseconds)	of
inactivity	before	emitting	the	latest	search	term.	This	helps	to	reduce	unnecessary	API	calls	for	rapidly	changing	search	terms.	-	switchMap((String	searchTerm)	maps	each	search	term	to	a	stream	of	SearchResult	objects	based	on	the	search	operation.	If	the	search	term	is	empty,	it	immediately	emits	a	null	result.	Otherwise,	it	performs	the	actual
search	operation	using	the	api.search	method,	which	returns	a	Future>.	This	future	is	wrapped	using	Rx.fromCallable	and	then	delayed	by	1	second	using	delay	to	introduce	a	delay	before	emitting	the	result.	The	mapped	stream	is	further	transformed	using	map	to	convert	the	search	results	into	appropriate	SearchResult	objects
(SearchResultNoResult,	SearchResultWithResult,	or	SearchResultLoading)	based	on	the	conditions.	-	startWith(const	SearchResultLoading())	emits	a	loading	result	as	the	initial	value	when	the	search	begins.	-	onErrorReturnWith((error,	_)	=>	SearchResultWithError(error))	handles	any	errors	that	occur	during	the	search	operation	and	emits	a
SearchResultWithError	object.import	'dart:async';	import	'package:flutter/foundation.dart'	show	immutable;import	'package:infinite_words/bloc/api.dart';import	'package:infinite_words/bloc/search_result.dart';import	'package:rxdart/rxdart.dart';	@immutableclass	SearchBloc	{	final	Sink	search;	final	Stream	results;	void	dispose()	{	search.close();	}
factory	SearchBloc({required	Api	api})	{	final	textChanges	=	BehaviorSubject();	final	result	=	textChanges	.distinct()	.debounceTime(const	Duration(milliseconds:	350))	.switchMap((String	searchTerm)	{	if	(searchTerm.isEmpty)	{	return	Stream.value(null);	}	else	{	return	Rx.fromCallable(()	=>	api.search(searchTerm))	.delay(const	Duration(seconds:
1))	.map((results)	=>	results.isEmpty	?	const	SearchResultNoResult()	:	SearchResultWithResult(results),)	.startWith(const	SearchResultLoading())	.onErrorReturnWith((error,	_)	=>	SearchResultWithError(error));	}	});	return	SearchBloc._(search:	textChanges.sink,	results:	result,);	}	const	SearchBloc._({	required	this.search,	required	this.results,
});}	Step	-	5	UI	Development	Custom	widget	to	display	out	search	result	in	GridViewimport	'package:flutter/material.dart';	class	GridViewWidget	extends	StatelessWidget	{	const	GridViewWidget({	Key?	key,	required	this.results,	})	:	super(key:	key);	final	List	results;	@override	Widget	build(BuildContext	context)	{	return	Expanded(child:
GridView.builder(itemCount:	results.length,	gridDelegate:	const	SliverGridDelegateWithMaxCrossAxisExtent(maxCrossAxisExtent:	200,	childAspectRatio:	3	/	2,	crossAxisSpacing:	20,	mainAxisSpacing:	20),	itemBuilder:	(context,	index)	{	return	Container(alignment:	Alignment.center,	decoration:	BoxDecoration(color:	Colors.white,	borderRadius:
BorderRadius.circular(15)),	child:	Text(results[index],	textAlign:	TextAlign.center,	style:	const	TextStyle(fontSize:	20,	fontWeight:	FontWeight.bold),),);	},),);	}}	Step	-	6	This	code	provides	a	UI	representation	of	the	different	states	of	the	search	results	and	handles	the	appropriate	rendering	based	on	the	received	data.import
'package:flutter/material.dart';import	'package:infinite_words/bloc/search_result.dart';import	'package:infinite_words/widgets/grid_view_widget.dart';	class	SearchResultView	extends	StatelessWidget	{	final	Stream	searchResults;	const	SearchResultView({	Key?	key,	required	this.searchResults,	})	:	super(key:	key);	@override	Widget
build(BuildContext	context)	{	return	StreamBuilder(stream:	searchResults,	builder:	(BuildContext	context,	AsyncSnapshot	snapshot,)	{	if	(snapshot.hasData)	{	final	result	=	snapshot.data;	if	(result	is	SearchResultWithError)	{	return	const	Center(child:	Text('Error'));	}	else	if	(result	is	SearchResultLoading)	{	return	const	Center(child:
CircularProgressIndicator());	}	else	if	(result	is	SearchResultNoResult)	{	return	const	Center(child:	Text('No	Result	Found'));	}	else	if	(result	is	SearchResultWithResult)	{	final	results	=	result.result;	return	GridViewWidget(results:	results);	}	else	{	return	const	Center(child:	Text("Unknown	State"));	}	}	else	{	return	const	Center(child:	Text(
"Waiting.....",	style:	TextStyle(color:	Colors.white,	fontSize:	18),),);	}	},);	}}	Step	-7	This	code	sets	up	the	home	page	of	the	application	with	a	text	input	field	for	searching	words	and	displays	the	search	results	using	the	SearchResultView	widget.	The	SearchBloc	manages	the	search	functionality	and	emits	the	search	results	to	the	UI.import
'package:flutter/material.dart';import	'package:infinite_words/bloc/api.dart';import	'package:infinite_words/bloc/search_bloc.dart';import	'package:infinite_words/view/search_result_view.dart';	class	HomePage	extends	StatefulWidget	{	const	HomePage({Key?	key})	:	super(key:	key);	@override	State	createState()	=>	_HomePageState();}	class
_HomePageState	extends	State	{	late	final	SearchBloc	_bloc;	@override	void	initState()	{	_bloc	=	SearchBloc(api:	Api());	super.initState();	}	@override	void	dispose()	{	super.dispose();	_bloc.dispose();	}	@override	Widget	build(BuildContext	context)	{	return	Scaffold(backgroundColor:	Colors.black,	//	appBar:	AppBar(//	title:	const	Text('Search'),	//),
body:	Padding(padding:	const	EdgeInsets.all(10),	child:	Column(children:	[const	SizedBox(height:	50,),	TextField(decoration:	InputDecoration(border:	InputBorder.none,	filled:	true,	fillColor:	Colors.white,	contentPadding:	const	EdgeInsets.only(left:	14.0,	bottom:	6.0,	top:	8.0),	focusedBorder:	OutlineInputBorder(borderSide:	const
BorderSide(color:	Colors.grey),	borderRadius:	BorderRadius.circular(10.0),),	enabledBorder:	UnderlineInputBorder(borderSide:	const	BorderSide(color:	Colors.white),	borderRadius:	BorderRadius.circular(10.0),),	hintText:	"Write	a	word",	hintStyle:	const	TextStyle(fontSize:	20,	//	color:	Colors.white,)),	onChanged:	_bloc.search.add),	const
SizedBox(height:	10,),	SearchResultView(searchResults:	_bloc.results)],),),);	}}	SourceCode	RxDart	extends	the	capabilities	of	DartStreams	andStreamControllers.Dart	comes	with	a	very	decentStreams	APIout-of-the-box;	rather	than	attempting	to	provide	an	alternative	to	this	API,RxDart	adds	functionality	from	the	reactive	extensions	specification
on	top	ofit.RxDart	does	not	provide	its	Observable	class	as	a	replacement	for	DartStreams.	Instead,	it	offers	several	additional	Stream	classes,	operators(extension	methods	on	the	Stream	class),	and	Subjects.If	you	are	familiar	with	Observables	from	other	languages,	please	see	the	RxObservables	vs.	Dart	Streams	comparison	chartfor	notable
distinctions	between	the	two.	RxDart	0.23.x	moves	away	from	the	Observable	class,	utilizing	Dart	2.6's	newextension	methods	instead.	This	requires	several	small	refactors	that	can	beeasily	automated	--	which	is	just	what	we've	done!Please	follow	the	instructions	on	therxdart_codemod	package	toautomatically	upgrade	your	code	to	support	RxDart
0.23.x.	import	'package:rxdart/rxdart.dart';void	main()	{	const	konamiKeyCodes	=	[KeyCode.UP,	KeyCode.UP,	KeyCode.DOWN,	KeyCode.DOWN,	KeyCode.LEFT,	KeyCode.RIGHT,	KeyCode.LEFT,	KeyCode.RIGHT,	KeyCode.B,	KeyCode.A,];	final	result	=	querySelector('#result')!;	document.onKeyUp	.map((event)	=>	event.keyCode)	.bufferCount(10,
1)	//	An	extension	method	provided	by	rxdart	.where((lastTenKeyCodes)	=>	const	IterableEquality().equals(lastTenKeyCodes,	konamiKeyCodes))	.listen((_)	=>	result.innerHtml	=	'KONAMI!');}	RxDart	adds	functionality	to	Dart	Streams	in	three	ways:Stream	Classes	-	create	Streams	with	specific	capabilities,	such	as	combining	or	merging	many
Streams.Extension	Methods	-	transform	a	source	Stream	into	a	new	Stream	with	different	capabilities,	such	as	throttling	or	buffering	events.Subjects	-	StreamControllers	with	additional	powers	The	Stream	class	provides	different	ways	to	create	a	Stream:	Stream.fromIterable	or	Stream.periodic.	RxDart	provides	additional	Stream	classes	for	a	variety
of	tasks,	such	as	combining	or	merging	Streams!You	can	construct	the	Streams	provided	by	RxDart	in	two	ways.	The	following	examples	are	equivalent	in	terms	of	functionality:Instantiating	the	Stream	class	directly.Example:	final	mergedStream	=	MergeStream([myFirstStream,	mySecondStream]);Using	static	factories	from	the	Rx	class,	which	are
useful	for	discovering	which	types	of	Streams	are	provided	by	RxDart.	Under	the	hood,	these	factories	call	the	corresponding	Stream	constructor.Example:	final	mergedStream	=	Rx.merge([myFirstStream,	mySecondStream]);List	of	Classes	/	Static	Factories	The	extension	methods	provided	by	RxDart	can	be	used	on	any	Stream.	They	convert	a
source	Stream	into	a	new	Stream	with	additional	capabilities,	such	as	buffering	or	throttling	events.ExampleStream.fromIterable([1,	2,	3])	.throttleTime(Duration(seconds:	1))	.listen(print);	//	prints	1List	of	Extension	Methods	Dart	provides	the	StreamController	class	to	create	and	manage	a	Stream.	RxDart	offers	two	additional	StreamControllers	with
additional	capabilities,	known	as	Subjects:BehaviorSubject	-	A	broadcast	StreamController	that	caches	the	latest	added	value	or	error.	When	a	new	listener	subscribes	to	the	Stream,	the	latest	value	or	error	will	be	emitted	to	the	listener.	Furthermore,	you	can	synchronously	read	the	last	emitted	value.ReplaySubject	-	A	broadcast	StreamController
that	caches	the	added	values.	When	a	new	listener	subscribes	to	the	Stream,	the	cached	values	will	be	emitted	to	the	listener.	In	many	situations,	Streams	and	Observables	work	the	same	way.	However,	if	you're	used	to	standard	Rx	Observables,	some	features	of	the	Stream	API	may	surprise	you.	We've	included	a	table	below	to	help	folks	understand
the	differences.Additional	information	about	the	following	situations	can	be	found	by	reading	the	Rx	class	documentation.SituationRx	ObservablesDart	StreamsAn	error	is	raisedObservable	Terminates	with	ErrorError	is	emitted	and	Stream	continuesCold	ObservablesMultiple	subscribers	can	listen	to	the	same	cold	Observable,	and	each	subscription
will	receive	a	unique	Stream	of	dataSingle	subscriber	onlyHot	ObservablesYesYes,	known	as	Broadcast	StreamsIs	{Publish,	Behavior,	Replay}Subject	hot?YesYesSingle/Maybe/Completable	?YesYes,	uses	rxdart_ext	Single	(Completable	=	Single,	Maybe	=	Single)Support	back	pressureYesYesCan	emit	null?Yes,	except	RxJavaYesSync	by
defaultYesNoCan	pause/resume	a	subscription*?NoYes	Web	and	command-line	examples	can	be	found	in	the	example	folder.	In	order	to	run	the	web	examples,	please	follow	these	steps:	In	order	to	run	the	command	line	example,	please	follow	these	steps:Clone	this	repo	and	enter	the	directoryRun	pub	getRun	dart	examples/fibonacci/lib/example.dart
10	Install	FlutterTo	run	the	flutter	example,	you	must	have	Flutter	installed.	For	installation	instructions,	view	the	onlinedocumentation.Run	the	appOpen	up	an	Android	Emulator,	the	iOS	Simulator,	or	connect	an	appropriate	mobile	device	for	debugging.Open	up	a	terminalcd	into	the	examples/flutter/github_search	directoryRun	flutter	doctor	to
ensure	you	have	all	Flutter	dependencies	working.Run	flutter	packages	getRun	flutter	run	Refer	to	the	Changelog	to	get	all	release	notes.	Check	out	rxdart_ext,	which	provides	many	extension	methods	and	classes	built	on	top	of	RxDart.	Ayoub	Ali	Posted	on	May	30,	2023	Reactive	programming	is	a	popular	paradigm	that	enables	developers	to	build
highly	responsive	and	scalable	applications.	When	combined	with	the	Flutter	framework,	it	empowers	developers	to	create	dynamic	and	reactive	user	interfaces.	One	of	the	most	powerful	libraries	for	reactive	programming	in	Flutter	is	RxDart.	In	this	blog	post,	we	will	explore	the	fundamentals	of	reactive	programming	and	demonstrate	how	RxDart
can	be	leveraged	to	enhance	your	Flutter	applications.	Outline	Core	Concepts	of	Reactive	Programming	At	its	core,	reactive	programming	revolves	around	three	fundamental	concepts:	Observables:Observables	represent	a	sequence	of	values	that	can	change	over	time.	They	can	emit	data	or	events,	and	other	parts	of	the	application	can	subscribe	to
these	observables	to	be	notified	when	new	values	or	events	are	available.Streams:Streams	are	a	type	of	observables	in	reactive	programming.	They	provide	a	continuous	flow	of	data	or	events	over	time.	Developers	can	listen	to	streams	and	react	to	the	data	or	events	emitted	by	them.Data	Flow:Reactive	programming	encourages	a	unidirectional	data
flow,	where	changes	in	the	observables	trigger	updates	in	dependent	components	or	operations.	This	ensures	that	the	application	remains	responsive	and	efficiently	handles	changes	without	causing	unnecessary	side	effects.	By	leveraging	these	core	concepts,	reactive	programming	enables	developers	to	build	applications	that	can	react	to	user
interactions,	data	updates,	and	other	events	in	a	scalable	and	efficient	manner.	It	promotes	a	more	declarative	and	event-driven	style	of	programming,	making	it	easier	to	handle	complex	asynchronous	operations	and	maintain	a	responsive	user	interface.	RxDart	Installation	and	Setup	To	install	RxDart	and	set	it	up	in	your	Flutter	project,	follow	these
steps:	Open	your	Flutter	project	in	an	IDE	or	text	editor.Open	the	pubspec.yaml	file	located	in	the	root	directory	of	your	Flutter	project.In	the	dependencies	section	of	the	pubspec.yaml	file,	add	the	following	line:dependencies:	rxdart:	^0.27.1	This	line	specifies	that	your	project	will	depend	on	the	RxDart	library	and	uses	version	0.27.1	(or	the	latest
version	available).	Save	the	pubspec.yaml	file.In	your	IDE	or	terminal,	run	the	following	command	to	fetch	and	install	the	RxDart	library:	This	command	will	download	the	RxDart	library	and	make	it	available	for	use	in	your	Flutter	project.	Once	the	installation	is	complete,	you	can	start	using	RxDart	in	your	Flutter	code.	Import	the	RxDart	package	in
the	relevant	files	where	you	intend	to	use	it:import	'package:rxdart/rxdart.dart';	You	are	now	ready	to	utilize	RxDart	and	its	reactive	programming	capabilities	in	your	Flutter	project.	Refer	to	the	RxDart	documentation	and	examples	to	learn	about	different	observables,	streams,	and	operators	provided	by	the	library.	Remember	to	import	the
necessary	classes	from	the	RxDart	package	whenever	you	need	to	use	them	in	your	code.	Note:	Make	sure	to	follow	the	Flutter	and	Dart	version	compatibility	requirements	specified	by	the	RxDart	library.	Key	concept	of	Observable,	Stream,	StreamController	and	Subjects	in	RxDart	Key	Concepts	in	RxDart:	Observable:	Observables	represent	a
stream	of	data	or	events	that	can	change	over	time.They	allow	you	to	emit	values	or	events	and	enable	other	parts	of	the	application	to	subscribe	and	react	to	those	emissions.Observables	can	be	created	from	various	sources	such	as	lists,	futures,	or	streams.	Example:	//	Creating	an	Observable	from	a	List	final	numbers	=	Observable.fromIterable([1,
2,	3,	4,	5]);	//	Subscribing	to	the	Observable	final	subscription	=	numbers.listen((number)	{	print('Received	number:	$number');	});	//	Output:	Received	number:	1,	Received	number:	2,	...	Stream	and	StreamController:	A	stream	represents	a	sequence	of	asynchronous	events.	It	is	a	core	concept	in	Dart's	async	programming	model.StreamController
acts	as	a	source	of	events	for	a	stream.	It	allows	you	to	add	events	to	the	stream	and	control	its	flow.Streams	provide	a	way	to	handle	asynchronous	data	and	enable	listening	to	events	emitted	by	the	stream.	Example:	//	Creating	a	StreamController	final	controller	=	StreamController();	//	Adding	events	to	the	stream	controller.add(1);
controller.add(2);	controller.add(3);	//	Listening	to	the	stream	final	subscription	=	controller.stream.listen((event)	{	print('Received	event:	$event');	});	//	Output:	Received	event:	1,	Received	event:	2,	...	Subjects:	Subjects	are	a	type	of	Observable	and	StreamController	combined.	They	can	act	as	both	a	source	of	events	and	a	stream	to	listen	to	those
events.RxDart	provides	different	types	of	subjects,	such	as	BehaviorSubject,	PublishSubject,	and	ReplaySubject,	each	with	unique	characteristics.Subjects	are	often	used	for	managing	state	and	broadcasting	events	within	reactive	programming.	Example:	//	Creating	a	BehaviorSubject	final	subject	=	BehaviorSubject();	//	Subscribing	to	the
BehaviorSubject	final	subscription	=	subject.listen((value)	{	print('Received	value:	$value');	});	//	Emitting	values	through	the	BehaviorSubject	subject.add(1);	subject.add(2);	subject.add(3);	//	Output:	Received	value:	1,	Received	value:	2,	...	Reactive	event	handling	Combining	streams	and	observables	in	RxDart	1.	Reactive	Event	Handling:	Reactive
event	handling	refers	to	the	ability	of	RxDart	to	handle	and	react	to	events	in	a	reactive	and	efficient	manner.	It	allows	you	to	listen	to	events	from	various	sources,	such	as	user	interactions,	network	responses,	or	timer	events,	and	perform	actions	based	on	those	events.	RxDart	provides	operators	and	techniques	to	handle	events	reactively,	enabling
you	to	build	responsive	and	dynamic	applications.	Example	of	Reactive	Event	Handling://	Creating	an	Observable	for	button	pressesfinal	buttonPresses	=	Observable(controller.stream);	//	Subscribing	to	button	presses	and	reacting	to	the	eventsfinal	subscription	=	buttonPresses.listen((event)	{	print('Button	pressed!');});	//	Simulating	button	presses
by	adding	events	to	the	streamcontroller.add(true);controller.add(false);	//	Output:	Button	pressed!,	Button	pressed!	2.	Combining	Streams	and	Observables:	Combining	streams	and	observables	in	RxDart	allows	you	to	merge,	combine,	or	transform	multiple	streams	or	observables	into	a	single	stream	or	observable.	This	capability	is	useful	when	you
need	to	handle	multiple	data	sources	or	perform	complex	operations	on	data	emitted	by	different	streams	or	observables.	Example	of	Combining	Streams	and	Observables://	Creating	two	streamsfinal	stream1	=	Stream.fromIterable([1,	2,	3]);final	stream2	=	Stream.fromIterable([4,	5,	6]);	//	Combining	the	streams	into	a	single	streamfinal
combinedStream	=	Rx.concat([stream1,	stream2]);	//	Subscribing	to	the	combined	stream	and	reacting	to	the	eventsfinal	subscription	=	combinedStream.listen((event)	{	print('Combined	event:	$event');});	//	Output:	Combined	event:	1,	Combined	event:	2,	...,	Combined	event:	6	In	this	example,	the	concat	operator	from	RxDart	combines	two	streams
into	a	single	stream,	merging	their	events	in	the	order	they	occur.	The	resulting	combined	stream	emits	events	from	both	stream1	and	stream2.	Advanced	Techniques	and	Best	PracticesThrottling	and	Debouncing:	Throttling	and	debouncing	are	techniques	used	to	control	the	rate	at	which	events	are	emitted.Throttling	limits	the	number	of	events
emitted	within	a	specified	time	interval.Debouncing	delays	emitting	events	until	a	specified	quiet	period	occurs,	discarding	any	previous	events	within	that	period.	Example	of	Throttling:	//	Creating	an	Observable	from	button	presses	final	buttonPresses	=	Observable(controller.stream);	//	Throttling	the	button	presses	to	emit	at	most	one	event	per	500
milliseconds	final	throttledButtonPresses	=	buttonPresses.throttleTime(Duration(milliseconds:	500));	//	Subscribing	to	the	throttled	button	presses	final	subscription	=	throttledButtonPresses.listen((event)	{	print('Button	pressed!');	});	//	Simulating	multiple	button	presses	for	(int	i	=	0;	i	<	10;	i++)	{	controller.add(true);	await
Future.delayed(Duration(milliseconds:	100));	}	//	Output:	Button	pressed!	Example	of	Debouncing:	//	Creating	an	Observable	from	search	queries	final	searchQueries	=	Observable(controller.stream);	//	Debouncing	the	search	queries	to	emit	events	only	after	500	milliseconds	of	quiet	period	final	debouncedSearchQueries	=
searchQueries.debounceTime(Duration(milliseconds:	500));	//	Subscribing	to	the	debounced	search	queries	final	subscription	=	debouncedSearchQueries.listen((query)	{	print('Search	query:	$query');	//	Perform	search	operation	here	});	//	Simulating	search	queries	controller.add('flutter');	await	Future.delayed(Duration(milliseconds:	200));
controller.add('rx');	await	Future.delayed(Duration(milliseconds:	200));	controller.add('dart');	await	Future.delayed(Duration(milliseconds:	800));	//	Output:	Search	query:	dart	Error	Handling	and	Retries:	RxDart	provides	operators	to	handle	errors	emitted	by	observables	or	streams.Error-handling	operators	like	onErrorResumeNext	or	catchError
allow	you	to	handle	errors	gracefully	and	provide	fallback	mechanisms.You	can	also	implement	retry	mechanisms	using	operators	like	retry	or	retryWhen	to	automatically	retry	failed	operations.	Example	of	Error	Handling	and	Retries:	//	Creating	an	Observable	from	a	network	request	final	request	=	Observable.fromFuture(fetchDataFromNetwork());
//	Handling	errors	and	providing	a	fallback	value	final	response	=	request.onErrorResumeNext(Observable.just('Fallback	response'));	//	Subscribing	to	the	response	final	subscription	=	response.listen((data)	{	print('Received	data:	$data');	},	onError:	(error)	{	print('Error	occurred:	$error');	});	//	Output:	Received	data:	Fallback	response	(in	case	of
error)	Memory	Management	and	Resource	Disposal:	It	is	essential	to	manage	resources	and	dispose	of	subscriptions	and	subjects	properly	to	avoid	memory	leaks.Use	the	takeUntil	or	takeWhile	operators	to	automatically	dispose	of	subscriptions	when	certain	conditions	are	met.Dispose	of	subscriptions	and	subjects	explicitly	using	the
subscription.cancel()	or	subject.close()	methods	when	they	are	no	longer	needed.	Example	of	Memory	Management	and	Resource	Disposal:	//	Creating	an	Observable	from	a	timer	final	timer	=	Observable(Stream.periodic(Duration(seconds:	1),	(value)	=>	value));	//	Subscribing	to	the	timer	and	automatically	disposing	of	the	subscription	after	5
seconds	final	subscription	=	timer.takeUntil(Observable.timer(null,	Duration(seconds:	5))).listen((value)	{	print('Timer	value:	$value');	});	//	Output:	Timer	value:	0,	Timer	value:	1,	Timer	value:	2,	Timer	value:	3,	Timer	value:	4	//	Disposing	of	the	subscription	explicitly	after	it	is	no	longer	needed	subscription.cancel();	Testing	and	Debugging	with
RxDart	Testing	and	debugging	are	crucial	aspects	of	any	software	development	process.	Here's	how	you	can	approach	testing	and	debugging	with	RxDart,	along	with	an	example:	Testing	with	RxDart:	RxDart	provides	various	utilities	and	techniques	to	test	observables,	streams,	and	operators.Use	the	TestWidgetsFlutterBinding.ensureInitialized()
method	to	initialize	the	test	environment	before	running	RxDart	tests.Utilize	the	TestStream	class	from	the	rxdart/testing.dart	package	to	create	testable	streams	and	observables.Use	test-specific	operators	like	materialize()	and	dematerialize()	to	convert	events	into	notifications	that	can	be	easily	asserted.	Example	of	Testing	with	RxDart:	import
'package:rxdart/rxdart.dart';	import	'package:rxdart/testing.dart';	import	'package:test/test.dart';	void	main()	{	test('Test	observable	emits	correct	values',	()	{	//	Initialize	the	test	environment	TestWidgetsFlutterBinding.ensureInitialized();	//	Create	a	TestStream	final	stream	=	TestStream();	//	Emit	values	to	the	stream	stream.emit(1);	stream.emit(2);
stream.emit(3);	stream.close();	//	Create	an	observable	from	the	TestStream	final	observable	=	Observable(stream);	//	Assert	the	emitted	values	expect(observable,	emitsInOrder([1,	2,	3]));	});	}	Debugging	with	RxDart:	RxDart	provides	debugging	operators	that	help	analyze	and	debug	observables	and	streams	during	development.The	doOnData()
operator	allows	you	to	inspect	each	emitted	data	item,	enabling	you	to	log	or	perform	other	debugging	operations.The	doOnError()	and	doOnDone()	operators	allow	you	to	handle	error	and	completion	events	respectively	for	debugging	purposes.	Example	of	Debugging	with	RxDart:	//	Creating	an	observable	from	a	list	final	observable	=
Observable.fromIterable([1,	2,	3,	4,	5]);	//	Adding	the	doOnData	operator	for	debugging	final	debugObservable	=	observable.doOnData((data)	{	print('Data:	$data');	});	//	Subscribing	to	the	debugObservable	final	subscription	=	debugObservable.listen((data)	{	print('Received	data:	$data');	},	onError:	(error)	{	print('Error	occurred:	$error');	},
onDone:	()	{	print('Stream	completed');	});	//	Output:	//	Data:	1	//	Received	data:	1	//	Data:	2	//	Received	data:	2	//	Data:	3	//	Received	data:	3	//	Data:	4	//	Received	data:	4	//	Data:	5	//	Received	data:	5	//	Stream	completed	By	applying	testing	and	debugging	techniques,	you	can	ensure	the	correctness	and	reliability	of	your	RxDart	code.	Test	your
observables	and	streams	using	the	provided	testing	utilities	and	leverage	debugging	operators	to	gain	insights	into	the	behavior	of	your	reactive	code	during	development	and	troubleshooting	processes.	Real-World	Example	In	this	example	we	will	build	a	fully	functional	app	that	search	a	world	from	JSON	API.	Step	-1	In	first	step	we	will	generate	a
model	for	our	JSON	API.Use	can	use	QuikeType.io	to	generate	it	just	paste	the	JSON	schema	and	you	have	the	model	@immutableclass	Words	{	final	List	names;	const	Words({	required	this.names,	});	Words	copyWith({	List?	names,	})	=>	Words(names:	names	??	this.names,);	factory	Words.fromJson(Map	json)	=>	Words(names:
List.from(json["names"].map((x)	=>	x)),);	Map	toJson()	=>	{	"names":	List.from(names.map((x)	=>	x)),	};}	This	code	provides	a	way	to	convert	Words	objects	to	JSON	and	vice	versa,	making	it	easy	to	serialize	and	deserialize	the	data	for	communication	or	storage	purposes.	Step	-2	Let's	build	a	heraricary	that	focuses	on	creating	of	classes
representing	different	search	result	states.	Each	class	represents	a	specific	state,	such	as	loading,	no	result,	error,	or	with	a	successful	result.import	'package:flutter/foundation.dart'	show	immutable;	@immutableabstract	class	SearchResult	{	const	SearchResult();}	@immutableclass	SearchResultLoading	implements	SearchResult	{	const
SearchResultLoading();}	@immutableclass	SearchResultNoResult	implements	SearchResult	{	const	SearchResultNoResult();}	@immutableclass	SearchResultWithError	implements	SearchResult	{	final	Object?	error;	const	SearchResultWithError(this.error);}	@immutableclass	SearchResultWithResult	implements	SearchResult	{	final	List	result;
const	SearchResultWithResult(this.result);}	Step	-	3	Let's	Write	code	that	demonstrates	and	performs	a	search	operation	on	a	list	of	words	fetched	from	an	API.	This	code	demonstrates	the	basic	steps	involved	in	performing	a	search	operation	using	a	remote	API,	caching	the	results,	and	extracting	the	matching	words	based	on	a	search	term.import
'dart:convert';	import	'package:http/http.dart'	as	http;	class	Api	{	List?	_words;	Api();	//	Step	-	3	Future	search(String	searchTerm)	async	{	final	term	=	searchTerm.trim().toLowerCase();	final	cachedResult	=	_extractWordsUsingSearchTerm(searchTerm);	if	(cachedResult	!=	null)	{	return	cachedResult;	}	//	api	calling	final	words	=	await	_getData("
_words	=	words;	return	_extractWordsUsingSearchTerm(term)	??	[];	}	//	Step	-	2	List?	_extractWordsUsingSearchTerm(String	word)	{	final	cachedWords	=	_words;	if	(cachedWords	!=	null)	{	List	result	=	[];	for	(final	worded	in	cachedWords)	{	if	(worded.contains(word.trim().toLowerCase()))	{	result.add(worded);	}	}	return	result;	}	else	{	return
null;	}	}	//	Step	-	1	//	Future	_getData(String	url)	=>	HttpClient()	//	.getUrl(Uri.parse(url))	//	.then((request)	=>	request.close())	//	.then((response)	=>	response.transform(utf8.decoder).join())	//	.then((jsonString)	=>	json.decode(jsonString)	as	List);	Future	_getData(String	url)	async	{	final	response	=	await	http.Client().get(Uri.parse(url));	final
parsed	=	jsonDecode(response.body)['names'];	List?	names	=	parsed	!=	null	?	List.from(parsed)	:	null;	return	names;	}}	//	work	only	on	String	not	listextension	TrimmedCaseInsensitiveContain	on	String	{	bool	trimmedContains(String	other)	=>	trim().toLowerCase().contains(other.trim().toLowerCase(),);}	Step	-	4	This	code	demonstrates	the	setup
of	a	reactive	search	bloc	using	RxDart.	It	establishes	a	bidirectional	communication	channel	for	searching	by	providing	a	sink	to	add	search	terms	and	a	stream	to	receive	search	results.	The	search	terms	undergo	stream	transformations	to	control	the	search	behavior,	and	the	results	are	emitted	as	a	stream	of	SearchResult	objects	with	different
states.	The	result	stream	is	created	by	chaining	several	stream	transformations	on	textChanges.	It	performs	the	following	operations:	-	distinct()	ensures	that	only	distinct	search	terms	are	processed.	-	debounceTime(const	Duration(milliseconds:	350))	delays	the	processing	of	the	search	term	stream,	allowing	a	brief	duration	(350	milliseconds)	of
inactivity	before	emitting	the	latest	search	term.	This	helps	to	reduce	unnecessary	API	calls	for	rapidly	changing	search	terms.	-	switchMap((String	searchTerm)	maps	each	search	term	to	a	stream	of	SearchResult	objects	based	on	the	search	operation.	If	the	search	term	is	empty,	it	immediately	emits	a	null	result.	Otherwise,	it	performs	the	actual
search	operation	using	the	api.search	method,	which	returns	a	Future>.	This	future	is	wrapped	using	Rx.fromCallable	and	then	delayed	by	1	second	using	delay	to	introduce	a	delay	before	emitting	the	result.	The	mapped	stream	is	further	transformed	using	map	to	convert	the	search	results	into	appropriate	SearchResult	objects
(SearchResultNoResult,	SearchResultWithResult,	or	SearchResultLoading)	based	on	the	conditions.	-	startWith(const	SearchResultLoading())	emits	a	loading	result	as	the	initial	value	when	the	search	begins.	-	onErrorReturnWith((error,	_)	=>	SearchResultWithError(error))	handles	any	errors	that	occur	during	the	search	operation	and	emits	a
SearchResultWithError	object.import	'dart:async';	import	'package:flutter/foundation.dart'	show	immutable;import	'package:infinite_words/bloc/api.dart';import	'package:infinite_words/bloc/search_result.dart';import	'package:rxdart/rxdart.dart';	@immutableclass	SearchBloc	{	final	Sink	search;	final	Stream	results;	void	dispose()	{	search.close();	}
factory	SearchBloc({required	Api	api})	{	final	textChanges	=	BehaviorSubject();	final	result	=	textChanges	.distinct()	.debounceTime(const	Duration(milliseconds:	350))	.switchMap((String	searchTerm)	{	if	(searchTerm.isEmpty)	{	return	Stream.value(null);	}	else	{	return	Rx.fromCallable(()	=>	api.search(searchTerm))	.delay(const	Duration(seconds:
1))	.map((results)	=>	results.isEmpty	?	const	SearchResultNoResult()	:	SearchResultWithResult(results),)	.startWith(const	SearchResultLoading())	.onErrorReturnWith((error,	_)	=>	SearchResultWithError(error));	}	});	return	SearchBloc._(search:	textChanges.sink,	results:	result,);	}	const	SearchBloc._({	required	this.search,	required	this.results,
});}	Step	-	5	UI	Development	Custom	widget	to	display	out	search	result	in	GridViewimport	'package:flutter/material.dart';	class	GridViewWidget	extends	StatelessWidget	{	const	GridViewWidget({	Key?	key,	required	this.results,	})	:	super(key:	key);	final	List	results;	@override	Widget	build(BuildContext	context)	{	return	Expanded(child:
GridView.builder(itemCount:	results.length,	gridDelegate:	const	SliverGridDelegateWithMaxCrossAxisExtent(maxCrossAxisExtent:	200,	childAspectRatio:	3	/	2,	crossAxisSpacing:	20,	mainAxisSpacing:	20),	itemBuilder:	(context,	index)	{	return	Container(alignment:	Alignment.center,	decoration:	BoxDecoration(color:	Colors.white,	borderRadius:
BorderRadius.circular(15)),	child:	Text(results[index],	textAlign:	TextAlign.center,	style:	const	TextStyle(fontSize:	20,	fontWeight:	FontWeight.bold),),);	},),);	}}	Step	-	6	This	code	provides	a	UI	representation	of	the	different	states	of	the	search	results	and	handles	the	appropriate	rendering	based	on	the	received	data.import
'package:flutter/material.dart';import	'package:infinite_words/bloc/search_result.dart';import	'package:infinite_words/widgets/grid_view_widget.dart';	class	SearchResultView	extends	StatelessWidget	{	final	Stream	searchResults;	const	SearchResultView({	Key?	key,	required	this.searchResults,	})	:	super(key:	key);	@override	Widget
build(BuildContext	context)	{	return	StreamBuilder(stream:	searchResults,	builder:	(BuildContext	context,	AsyncSnapshot	snapshot,)	{	if	(snapshot.hasData)	{	final	result	=	snapshot.data;	if	(result	is	SearchResultWithError)	{	return	const	Center(child:	Text('Error'));	}	else	if	(result	is	SearchResultLoading)	{	return	const	Center(child:
CircularProgressIndicator());	}	else	if	(result	is	SearchResultNoResult)	{	return	const	Center(child:	Text('No	Result	Found'));	}	else	if	(result	is	SearchResultWithResult)	{	final	results	=	result.result;	return	GridViewWidget(results:	results);	}	else	{	return	const	Center(child:	Text("Unknown	State"));	}	}	else	{	return	const	Center(child:	Text(
"Waiting.....",	style:	TextStyle(color:	Colors.white,	fontSize:	18),),);	}	},);	}}	Step	-7	This	code	sets	up	the	home	page	of	the	application	with	a	text	input	field	for	searching	words	and	displays	the	search	results	using	the	SearchResultView	widget.	The	SearchBloc	manages	the	search	functionality	and	emits	the	search	results	to	the	UI.import
'package:flutter/material.dart';import	'package:infinite_words/bloc/api.dart';import	'package:infinite_words/bloc/search_bloc.dart';import	'package:infinite_words/view/search_result_view.dart';	class	HomePage	extends	StatefulWidget	{	const	HomePage({Key?	key})	:	super(key:	key);	@override	State	createState()	=>	_HomePageState();}	class
_HomePageState	extends	State	{	late	final	SearchBloc	_bloc;	@override	void	initState()	{	_bloc	=	SearchBloc(api:	Api());	super.initState();	}	@override	void	dispose()	{	super.dispose();	_bloc.dispose();	}	@override	Widget	build(BuildContext	context)	{	return	Scaffold(backgroundColor:	Colors.black,	//	appBar:	AppBar(//	title:	const	Text('Search'),	//),
body:	Padding(padding:	const	EdgeInsets.all(10),	child:	Column(children:	[const	SizedBox(height:	50,),	TextField(decoration:	InputDecoration(border:	InputBorder.none,	filled:	true,	fillColor:	Colors.white,	contentPadding:	const	EdgeInsets.only(left:	14.0,	bottom:	6.0,	top:	8.0),	focusedBorder:	OutlineInputBorder(borderSide:	const
BorderSide(color:	Colors.grey),	borderRadius:	BorderRadius.circular(10.0),),	enabledBorder:	UnderlineInputBorder(borderSide:	const	BorderSide(color:	Colors.white),	borderRadius:	BorderRadius.circular(10.0),),	hintText:	"Write	a	word",	hintStyle:	const	TextStyle(fontSize:	20,	//	color:	Colors.white,)),	onChanged:	_bloc.search.add),	const
SizedBox(height:	10,),	SearchResultView(searchResults:	_bloc.results)],),),);	}}	SourceCodeReactive	Programming	is	a	paradigm	that	has	gained	substantial	recognition	for	managing	asynchronous	data	streams	and	handling	reactive	user	interfaces,	among	other	things.	Think	of	user	interactions,	API	responses,	or	even	animations	-	Reactive
Programming	handles	them	all.Introduction	to	RxDartEnter	RxDart	-	a	reactive	streaming	extension	library	built	on	top	of	Dart	Streams.	Its	not	an	attempt	to	replace	Dart	Streams	but	embellishes	them	with	the	goodness	of	reactive	programming.	RxDart	in	Flutter	has	become	increasingly	popular	due	to	its	seamless	capabilities	in	managing
asynchronous	data	stream	challenges.Bridging	RxDart	and	Dart	StreamsSo,	how	does	RxDart	connect	with	Dart	Streams?	Dart	comes	equipped	with	a	powerful	Streams	API	out-of-the-box.	However,	RxDart	adds	that	extra	sparkle	with	more	functionalities	based	on	reactive	extensions	for	Dart	Streams,	bringing	in	more	flexibility	and	control.Why
Choose	RxDart	for	Flutter?Flutter	applications	usually	have	to	deal	with	asynchronous	data	streams	extensively	-	be	it	user	interactions,	network	responses,	or	data	changes.	By	leveraging	RxDart,	we	can	handle	these	data	streams	more	lively,	responsive,	and	controlled.	Especially	when	dealing	with	complex	functionalities,	Flutter	RxDart	provides
ease	of	use	and	maintains	the	flow	of	data	in	a	precise	reactive	way.Getting	Started	with	RxDartBefore	diving	into	the	usage	of	RxDart	in	Flutter,	we	need	to	set	things	up.Installing	RxDartSetting	up	RxDart	in	your	Flutter	project	is	a	breeze.	All	you	need	to	do	is	include	it	as	a	dependency	in	your	pubspec.yaml	file.Here	is	how	you	add	RxDart:1
dependencies:2	flutter:3	sdk:	flutter4	rxdart:	^0.27.25	Remember	to	replace	the	package	version	with	the	latest	version	of	RxDart	available.	Dont	forget	to	run	flutter	pub	get	in	your	terminal	to	ensure	all	dependencies	are	fetched.Basic	Usage	of	RxDart	in	FlutterNow	that	we've	added	RxDart	to	our	project,	let's	see	a	simple	example	that	depicts	the
usage	of	RxDart	and	Dart	Streams.	RxDart	does	not	provide	its	Observable	class	as	a	replacement	for	Dart	Streams,	but	it	offers	several	additional	Stream	classes,	operators	(extension	methods	on	the	Stream	class),	and	Subjects.Below	is	a	simple	example	of	how	we	can	use	RxDart's	capabilities:1	import	'package:rxdart/rxdart.dart';2	3	void	main()	{4
final	subject	=	BehaviorSubject();5	6	//	observer7	subject.stream.listen(print);	//	prints	1,	2,	38	9	//	producer10	subject.sink.add(1);11	subject.sink.add(2);12	subject.sink.add(3);13	14	subject.close();15	}16	In	the	above	Flutter	RxDart	example,	we're	creating	a	BehaviorSubject	that	deals	with	integers.	We	listen	to	the	stream	of	data	and	print	whatever
data	is	added	into	the	BehaviorSubject.Deeper	Dive	into	RxDartAfter	setting	up	RxDart	and	understanding	its	basics,	we	now	venture	into	more	exciting	functionalities	that	the	Flutter	RxDart	combo	provides.	Let's	break	it	down	into	Stream	Classes,	Extension	Methods,	and	Subjects.Understanding	Stream	Classes	in	RxDartIn	RxDart,	Stream	Classes
allow	us	to	create	Streams	with	specific	capabilities,	such	as	combining	or	merging	many	Streams.	Dart	itself	provides	a	Stream	class	with	ways	to	create	a	Stream,	like	Stream.fromIterable	or	Stream.periodic.	RxDart,	however,	takes	it	up	a	notch	and	extends	some	cool	Stream	classes	for	different	use-cases.Here's	how	you	can	merge	two	streams
using	RxDart's	MergeStream:1	final	myFirstStream	=	Stream.fromIterable([1,	2,	3]);2	final	mySecondStream	=	Stream.fromIterable([4,	5,	6]);3	4	final	mergedStream	=	MergeStream([myFirstStream,	mySecondStream]);5	6	mergedStream.listen(print);	//	prints	1,	2,	3,	4,	5,	67	In	this	code,	we	create	two	Streams	and	merge	them	using	the
MergeStream	class	which	results	in	a	single	Stream	that	merges	the	events	from	both	input	Streams.Utilizing	RxDart	Extension	MethodsRxDart	extension	methods	are	just	methods	that	may	be	applied	to	any	Stream.	They	empower	an	existing	Stream	and	change	it	into	a	new	Stream	with	enhanced	capabilities.	Throttling	or	buffering	events,	for
example.Let's	see	an	example	where	we	buffer	a	Stream	of	integers	to	groups	of	two:1	Stream.fromIterable([1,	2,	3,	4,	5])2	.bufferCount(2)3	.listen(print);	//	prints	[1,	2],	[3,	4],	[5]4	The	bufferCount	is	an	extension	method	provided	by	RxDart	that	buffers	a	Stream	into	a	specified	count.	Another	powerful	feature	of	RxDart	is	Subjects	-	a	type	of
StreamController	with	added	powers!	Dart's	StreamController	creates	and	manages	a	Stream,	while	RxDart	offers	two	additional	types,	BehaviorSubject	and	ReplaySubject.The	BehaviorSubject	is	a	type	of	StreamController	that	caches	the	latest	added	value	or	error.	So,	when	a	new	listener	subscribes	to	the	Stream,	the	latest	value	or	error	will	be
emitted	to	the	listener.	This	can	be	extremely	useful	in	scenarios	where	you	want	to	share	a	single	value	(or	its	latest	status)	with	multiple	components	in	your	Flutter	application.An	example	of	a	BehaviorSubject	would	be:1	final	behaviorSubject	=	BehaviorSubject();2	3	//	Adding	data	to	the	stream4	behaviorSubject.add(1);5	behaviorSubject.add(2);6
behaviorSubject.add(3);7	8	//	This	will	print	3,	as	BehaviorSubject	always	returns	the	last	added	item9	behaviorSubject.stream.listen(print);10	11	behaviorSubject.close();12	RxDart	provides	a	gamut	of	functionalities	that	play	a	significant	role	in	enhancing	the	way	we	work	with	reactive	programming	in	Flutter.	Streams,	Extension	methods,	and
Subjects	are	the	core	elements	to	making	RxDart	one	of	the	most	efficient	means	to	handle	complex	asynchronous	data	streams	in	Flutter.RxDart	Observables	vs	Flutter	StreamsWhen	starting	with	RxDart,	developers	coming	from	other	Rx	libraries	might	question	the	differences	between	Observables	that	they	used	previously	and	Dart	Streams.	While
they	often	work	similarly,	there	are	a	few	variations	worth	mentioning.RxDart	Observables	vs	Flutter	StreamsKey	DifferencesDart	Streams	can	be	thought	of	as	asynchronous	Iterables	spread	out	over	time,	and	when	an	error	occurs	in	a	Stream,	the	Stream	emits	an	error	event	and	then	is	finished.	On	the	other	hand,	Observables,	as	in	the	standard
Rx	scenarios,	terminate	when	an	error	occurs.Dart	Streams	can	have	a	single	subscriber	(Single-subscription	streams)	or	multiple	subscribers	(broadcast	streams),	while	Rx	Observables	(Cold	Observables)	do	allow	multiple	subscribers,	and	each	subscription	will	receive	all	events.Transitioning	from	Observables	to	StreamsWhile	transitioning	from
Observables	to	Dart	Streams,	developers	need	to	keep	in	mind	that	Dart	Streams	emit	their	events	asynchronously,	and	are	not	synchronized	by	default.For	example,	last,	length,	and	other	methods	always	return	Futures:1	Stream.fromIterable([1,	2,	3,	4])2	.last3	.then(print);	//	prints	'4'4	The	given	differences	illuminate	the	contrast	and	help	in
recognizing	when	to	employ	Observables	or	Streams.	With	Flutter	RxDart,	you	start	with	Dart	Streams,	then	enhance	them	with	extension	methods	provided	by	RxDart,	offering	the	much-needed	boost	for	managing	data	streams.Integrating	RxDart	in	FlutterOne	aspect	that	makes	Flutter	applications	stand	out	in	the	field	of	cross-platform	application
development	is	state	management.	If	managed	efficiently,	apps	can	perform	exceptionally	with	a	smooth	UI	experience.	That's	where	Flutter	RxDart	steps	in,	facilitating	state	management	in	a	more	effortless	and	streamlined	manner.Importance	of	RxDart	in	State	ManagementRxDart	brings	the	power	of	streams	and	reactive	programming	to	Flutter,
making	state	management	a	breeze.	States	in	Flutter	equate	to	the	values	that	can	change	over	time.	Guess	what?	That's	exactly	what	streams	are	all	about!	A	vital	concept	in	this	scenario	is	BehaviorSubject.	As	discussed	before,	BehaviorSubject	is	a	special	type	of	stream	provided	by	RxDart	that	holds	the	most	recent	value,	and	it	can	be	accessed
synchronously.Implementing	StreamBuilder	with	RxDartFlutter	provides	a	handy	out-of-the-box	widget	called	StreamBuilder	that	automatically	registers	a	listener	to	a	Stream	and	invokes	the	builder	whenever	an	event	is	emitted.	StreamBuilder	and	RxDart	harmoniously	work	hand-in-hand	to	create	a	reactive	Flutter	application.Let's	look	at	a	simple
Flutter	RxDart	usage	with	StreamBuilder:1	import	'package:flutter/material.dart';2	import	'package:rxdart/rxdart.dart';3	4	void	main()	{5	runApp(MaterialApp(home:	MyApp()));6	}7	8	class	MyApp	extends	StatelessWidget	{9	final	BehaviorSubject	_subject	=	BehaviorSubject.seeded("Hello,	RxDart!");10	11	@override12	Widget	build(BuildContext
context)	{13	return	Scaffold(14	appBar:	AppBar(15	title:	Text('RxDart	with	StreamBuilder'),16),17	body:	Padding(18	padding:	EdgeInsets.all(16.0),19	child:	StreamBuilder(20	stream:	_subject.stream,21	builder:	(context,	snapshot)	{22	if	(snapshot.hasData)	{23	return	Text(24	snapshot.data!,25	style:	Theme.of(context).textTheme.headline4,26);27	}
else	{28	return	CircularProgressIndicator();29	}30	},31),32),33);34	}35	}36	In	the	example	above,	a	StreamBuilder	is	implemented	that	listens	to	the	_subject	stream.	Whenever	data	is	added	to	the	stream,	it	automatically	builds	the	widget.Dealing	with	Backpressure	in	Flutter	using	RxDartWhen	working	with	asynchronous	programming,
specifically	streams	of	data,	one	common	issue	that	might	arise	is	backpressure.	It's	a	condition	where	the	stream	is	producing	data	faster	than	its	consumer	(subscriber)	can	handle.	Backpressure	can	lead	to	performance	issues	or	even	crashes.RxDart	introduces	several	operators	that	assist	in	managing	backpressure	scenarios	in	Flutter	applications.
Let's	check	out	an	example	using	the	debounceTime	operator	to	tackle	backpressure:1	//	Keyboard	input	stream	that	emits	every	keyup	event2	final	inputStream	=	querySelector('#input')!.onKeyUp;3	4	inputStream5	.map((event)	=>	(event.currentTarget	as	InputElement).value)6	.debounceTime(Duration(milliseconds:	200))	//	RxDart	extension
method7	.listen((value)	=>	print('User	is	typing:	$value'));8	In	this	example,	if	the	user	is	typing	too	fast,	we	don't	want	to	handle	every	single	keyup	event	as	it	may	put	an	unwanted	load	on	our	application.	Thus,	we	debounce	the	keyup	stream	and	listen	to	it	only	if	the	user	hasn't	typed	anything	for	the	last	200	milliseconds.	This	way,	RxDart	helps
us	in	managing	backpressure.Advanced	RxDart	Concepts	for	Flutter	developersRxDart	goes	beyond	just	managing	asynchronous	data	streams.	It	also	supports	advanced	features	like	combining,	merging,	and	switching	between	different	streams	which	can	be	useful	for	complex	Flutter	applications.Advanced	RxDart	Concepts	for	Flutter
developersCombining,	Merging,	and	Switching	between	StreamsLet's	look	at	some	examples	for	these	advanced	concepts:Combining	StreamsIn	RxDart,	you	can	combine	multiple	streams	into	one	stream	that	will	emit	all	values	from	every	given	stream	in	order	of	subscription.	Let's	look	at	how	to	apply	the	CombineLatestStream	operator	to	two
streams:1	final	firstStream	=	Stream.fromIterable([1,	2]);2	final	secondStream	=	Stream.fromIterable(['A',	'B']);3	4	Rx.combineLatest2(firstStream,	secondStream,	(a,	b)	=>	'$a	$b')5	.listen(print);	//	prints	'1	A',	'2	B'6	Merging	StreamsMergeStream	merges	multiple	streams	into	one	stream	that	emits	all	data	from	the	given	streams	in	the	exact	order
they	were	emitted.1	final	firstStream	=	Stream.fromIterable([1,	2]);2	final	secondStream	=	Stream.fromIterable(['A',	'B']);3	4	Rx.merge([firstStream,	secondStream])5	.listen(print);	//	prints	1,	2,	A,	B6	Switching	Between	StreamsSwitchLatestStream	takes	a	Stream	of	Streams	(high-order	Stream)	as	input	and	always	emits	values	from	the	most
recently	provided	Stream.1	final	triggerSwitch	=	PublishSubject();2	final	firstStream	=	Rx.timer('A',	Duration(seconds:	3));3	final	secondStream	=	Rx.timer('B',	Duration(seconds:	1));4	5	triggerSwitch6	.switchMap((value)	=>	value	==	1	?	firstStream	:	secondStream)7	.listen(print);	//	if	switch	is	triggered	before	3	seconds,	it	will	print	B8	9
triggerSwitch.add(1);10	11	//	After	2	seconds,	trigger	to	switch	to	the	faster	stream12	Future.delayed(Duration(seconds:	2),	()	=>	triggerSwitch.add(2));13	One	of	the	strong	suits	of	RxDart	that	Flutter	developers	can	capitalize	on	is	these	advanced	functionalities	which	can	help	in	handling	complex	Flutter	apps	elegantly	and	effectively.Issues	and
Solutions	in	Using	RxDart	with	FlutterWhile	using	RxDart	with	Flutter,	developers	can	face	some	challenges.	But	don't	worry,	we're	here	to	address	these	common	pitfalls	and	provide	concise	solutions.Common	Mistakes	and	How	to	Prevent	ThemNot	Closing	Streams:	One	common	mistake	is	not	closing	streams	when	they're	no	longer	needed.	This
can	lead	to	memory	leaks.	Just	like	opening	a	Stream,	it's	important	to	close	them	too.Solution:	Always	remember	to	close	your	streams,	typically	in	dispose	method	in	Flutter:1	BehaviorSubject	counter;2	3	@override4	void	dispose()	{5	counter.close();6	super.dispose();7	}8	Not	Handling	Stream	Errors:	When	dealing	with	streams,	error	handling	is
often	overlooked.	Your	stream	might	throw	an	error	in	certain	cases,	and	if	not	caught,	it	can	result	in	a	crash.Solution:	Always	wrap	your	stream	in	a	try-catch	block	or	use	onError	as	a	method	to	handle	errors	gracefully:1	stream.listen(2	(data)	{	/*	handle	data	*/	},3	onError:	(error)	{	/*	handle	error	*/	},4	onDone:	()	{	/*	handle	done	*/	},5);6
Debugging	RxDart	ApplicationsDebugging	RxDart	applications	can	be	challenging	due	to	the	asynchronous	nature	of	streams.	However,	Dart	provides	a	debugging	utility	to	Dump	Stack	Traces	that	helps	in	debugging.Ideally,	you	would	need	to	handle	errors	gracefully	and	write	tests	for	error	scenarios	to	ensure	better	debugging	and	error	handling
in	your	Flutter	RxDart	applications.Real-World	Example:	Reading	Konami	Code	with	RxDartTo	fully	understand	the	potential	of	RxDart	in	Flutter,	let's	see	how	we	can	use	it	in	a	real-world	scenario.	In	this	scenario,	we'll	be	reading	the	Konami	Code	as	user	keyboard	input.	For	those	unfamiliar,	the	Konami	Code	is	a	secret	code	sequence	historically
used	in	video	games,	almost	like	an	easter	egg!Building	an	App	with	RxDartFirst,	let's	import	RxDart	and	define	the	ASCII	values	that	correspond	to	the	key	codes	in	the	Konami	Code:1	import	'package:rxdart/rxdart.dart';2	3	const	konamiKeyCodes	=	const	[4	KeyCode.UP,5	KeyCode.UP,6	KeyCode.DOWN,7	KeyCode.DOWN,8	KeyCode.LEFT,9
KeyCode.RIGHT,10	KeyCode.LEFT,11	KeyCode.RIGHT,12	KeyCode.B,13	KeyCode.A14];15	Next,	we	need	to	listen	for	key-up	events.	We'll	use	RxDart	to	buffer	the	last	ten	key	codes,	and	then	check	if	they	match	the	Konami	Code	sequence:1	document.onKeyUp2	.map((event)	=>	event.keyCode)3	.bufferCount(10,	1)4	.where((lastTenKeyCodes)	=>
const	IterableEquality().equals(lastTenKeyCodes,	konamiKeyCodes))5	.listen((_)	=>	result.innerHtml	=	'KONAMI!')6	In	this	example,	we	are	listening	for	keyup	events,	transforming	the	event	to	emit	only	the	key	code,	buffering	the	last	ten	emitted	key	codes,	and	then	checking	to	see	if	the	last	ten	key	codes	match	the	Konami	Code!This	example
demonstrates	how	elegantly	RxDart	handles	complex	asynchronous	data	sequences	allowing	Flutter	developers	to	create	robust	and	efficient	applications.Upgrading	from	RxDart	0.22.x	to	0.23.xUpgrades	are	required	as	technology	advances,	and	we	must	adapt	our	code	to	support	these	modifications.	The	same	is	true	for	RxDart.	The	Observable
class	has	been	deprecated	since	the	release	of	RxDart	0.23.x,	and	Dart	2.6's	extension	methods	are	being	utilized	instead.In	order	to	upgrade	your	code	to	support	the	latest	version,	RxDart	provides	an	automatic	upgrade	solution	using	the	rxdart_codemod	package.To	automatically	update	your	code,	follow	the	instructions	included	with	the
rxdart_codemod	package.	Simply	running	the	package	will	assist	in	refactoring	the	code	to	support	RxDart	0.23.x.This	way,	you	can	ensure	your	code	is	always	up-to-speed	with	the	latest	updates	of	RxDart	in	Flutter	and	harness	the	benefits	of	new	features	and	performance	improvements.Future	of	RxDart	in	FlutterThroughout	this	post,	we	traversed
the	diverse	landscape	of	RxDart	in	Flutter.	We	started	from	the	basics,	went	through	advanced	concepts,	and	also	looked	at	a	real-world	example	to	cap	it	off.Future	of	RxDart	in	FlutterWith	the	ever-growing	Flutter	ecosystem	and	the	consistent	evolution	of	reactive	programming,	RxDart	has	a	promising	future.	Being	capable	of	providing	more
refined	solutions	for	handling	asynchronous	data	streams	in	Flutter,	RxDart	is	bound	to	become	even	more	popular	among	Flutter	developers.Start	Reactive	Programming	with	Flutter	RxDart!RxDart	captures	the	essence	of	reactive	programming	and	integrates	smoothly	with	Flutter,	making	it	an	influential	asset	for	mobile	app	developers.	It
embraces	Dart	Streams'	power	and	enhances	them	with	additional	classes,	methods,	and	functionalities	that	streamlined	asynchronous	stream	management.	With	mastery	over	RxDart,	you	can	create	reactive	applications	in	Flutter	that	are	robust,	efficient,	and	provide	a	smooth	user	experience.Remember,	regardless	of	the	technology	you	work	with,
constant	learning	and	practising	are	the	keys	to	becoming	a	proficient	software	developer.	Be	it	Flutter	RxDart	or	any	other	tech	stack,	keep	exploring	and	keep	coding!Your	journey	into	the	world	of	reactive	programming	with	Flutter	RxDart	starts	here.	Good	luck!1.	What	is	BLoC	in	Flutter?BLoC	stands	for	Business	Logic	Component.	It	helps
separate	business	logic	from	the	UI	using	streams.2.	How	does	RxDart	enhance	BLoC?RxDart	provides	advanced	stream	manipulation	capabilities,	improving	BLoCs	functionality.3.	What	are	the	core	concepts	of	RxDart?Streams,	Sinks,	Subjects.4.	How	do	I	set	up	BLoC	in	a	Flutter	project?Define	BLoC	classes,	create	events	and	states,	and	use
streams	to	manage	state.5.	What	is	the	purpose	of	StreamTransformers	in	BLoC?They	help	in	transforming	and	manipulating	stream	data	efficiently.6.	How	can	I	test	BLoC	classes?Use	Flutters	testing	framework	to	check	BLoCs	stream	outputs	and	event	handling.7.	What	are	some	common	mistakes	with	BLoC	and	RxDart?Avoid	managing	too	many
streams	and	ensure	streams	are	properly	disposed	of.8.	How	can	I	debug	BLoC	streams?Use	debugging	tools	and	monitor	streams	to	ensure	they	emit	the	correct	states.9.	What	are	the	benefits	of	using	BLoC?Improved	separation	of	concerns	and	easier	state	management.10.	How	does	BLoC	improve	app	performance?By	managing	the	state
efficiently	and	reducing	UI	rebuilds.11.	Can	I	use	BLoC	without	RxDart?Yes,	but	RxDart	adds	powerful	features	for	stream	manipulation.12.	What	are	the	best	practices	for	using	BLoC?Keep	BLoC	classes	focused,	manage	streams	carefully,	and	test	thoroughly.Learning	Resources	for	Flutter	State	ManagementOfficial	Flutter	Documentation:	State
ManagementFlutter	BLoC	Library:	BLoC	PackageRxDart	Documentation:	RxDart	GuideOnline	Tutorials:	State	Management	with	BLoCVideo	Courses:	Flutter	State	ManagementReactive	programming	is	programming	with	asynchronous	observable	streams.	In	Dart,	stream	provide	an	asynchronous	sequence	of	data.	In	this	first	part,	we	will	be	looking
on	how	to	do	reactive	programming	for	our	flutter	applications	by	extending	the	capabilities	of	dart	stream	with	RxDart	using	its	Subjects	and	Stream	Classes.	In	next	part	we	will	check	the	Extension	Methods	on	the	Stream	Classes	aka	Operators	of	Rx.tPhoto	by	Jordan	on	UnsplashIntroductionDart	streams	were	developed	with	reactive	programming
in	mind,	Instead	of	providing	an	alternative	to	it,	RxDart	adds	additional	functionality	using	the	reactive	approach	on	top	of	it.SetupAdd	rxdart	to	your	flutter	projects	pubspec.yaml	file:dependencies:	rxdart:Now	in	our	code,	we	can	use	it	by	importing	it:import	'package:rxdart/rxdart.dart';RxDart	does	not	provide	Rxs	main	class	Observable	as
alternative	for	Dart	Streams.	Instead,	it	offers	several	additional	Subjects,	Stream	Classes	and	Extension	Methods	on	the	Stream	Classes	(Operators	of	Rx).	lets	look	over	it,SubjectsIn	Dart,	if	weve	to	send	data,	error	and	done	events	to	its	stream	we	use	StreamController	but,	in	RxDart	we	have	to	use	Subject	which	is	the	same	as	StreamController
but	with	additional	stuff.all	the	subjects	of	RxDart	is	similar	to	broadcast	StreamController	which	means	we	can	listened	to	the	subjects	stream	as	many	time	as	we	want.BehaviorSubjectIn	BehaviorSubject	the	most	recent	item	that	we	added	to	our	subject	is	dispatched	to	its	new	listeners.	When	we	listen	to	our	new	listener	it	will	receive	the	latest
stored	item	from	the	subject	and	after	that	new	event	will	be	sent	to	all	other	listeners.	lets	see	with	example,We	can	also	assign	an	initial	value	to	our	BehaviorSubject.	like	this,PublishSubjectIn	PublishSubject	all	the	items	that	we	added	to	our	subject	is	dispatched	to	its	listeners.	this	is	most	easiest	subject	among	other	subjects	provided	by
rxdart.for	this,	the	sequence	of	listener	matters	for	adding	and	listening	to	the	items	of	PublishSubject.	lets	see	with	example,ReplaySubjectIn	ReplaySubject	all	the	items	we	added	to	our	subject	is	dispatched	to	its	listeners	doesnt	matter	the	sequence	when	we	add	first	or	listen	first	to	that	items	of	ReplaySubject,	unlike	PublishSubject	and
BehaviorSubject.	lets	see	with	example,We	can	also	specify	a	maxSize	value	at	the	time	of	initializing	the	ReplaySubject	variable.	this	means	we	can	only	listen	to	the	number	of	latest	items	that	equal	to	the	maxSize.	like	this,But	maxSize	did	not	work	when	we	added	items	later	/	or	after	the	listener.The	Stream	Class	is	a	source	of	asynchronous	data
events.	RxDart	gives	us	different	ways	to	create	a	Stream	with	Stream	Classes	that	have	additional	capabilities	to	create	a	variety	of	tasks	as	per	our	requirement,	such	as	combining	or	merging	Streams!!We	can	create	the	Streams	provided	by	RxDart	in	two	ways.	by	instantiating	the	stream	class	directly	like	this,final	mergedStream	=
MergeStream([firstStream,	secondStream]);and	using	static	factories	from	the	Rx	class	like	this,final	mergedStream	=	Rx.merge([firstStream,	secondStream]);There	are	so	many	Stream	Classes	are	provided	by	RxDart	lets	see	them	with	example,CombineLatestStream	:	This	stream	joins	all	the	given	streams	into	one	single	stream	sequence	by
combining	them	when	any	of	the	source	stream	sequences	send	forth	an	item.	this	stream	will	emit	items	after	all	others	streams	that	we	want	to	combine	have	emitted	at	least	one	item.	If	any	of	the	streams	that	we	want	to	combine	is	empty	then	the	resulting	sequence	completes	instantly	without	emitting	any	items.ConcatStream	:	This	stream	is
used	when	we	want	to	concatenates	all	stream	sequences.	ConcatStream	concat	the	next	stream	sequence	after	the	previous	stream	sequence	is	terminated	successfully.	In	case	where	the	streams	is	empty	then	its	completes	instantly	without	emitting	any	items.ConcatEagerStream	:	This	stream	is	similar	with	ConcatStream	only	the	difference	is	that
instead	of	subscribing	to	stream	one	by	one,	all	the	streams	are	immediately	subscribed	with	correct	time.DeferStream	:	This	stream	is	used	when	we	want	to	constructs	a	stream	lazily	when	we	subscribes	to	it.	In	some	case	we	have	to	wait	until	the	last	minute	to	generate	the	stream	that	have	latest	data.	its	a	single	subscription	stream	but	we	can
make	it	reusable.ForkJoinStream	:	This	stream	is	used	when	we	only	want	sequence	that	contains	only	final	emitted	value	of	each	stream.	in	the	case	where	any	of	the	inner	streams	have	some	error	then	we	will	lose	the	value	of	any	other	streams	that	already	completed	if	we	not	catch	that	error	correctly	on	the	inner	stream.FromCallableStream	:
This	stream	is	used	when	we	want	to	return	a	stream	that	is	based	on	the	result	of	some	function.	the	stream	emits	the	value	thats	returned	from	that	function.MergeStream	:	This	stream	is	used	when	we	have	to	flattens	the	items	that	emitted	by	the	given	streams	into	a	single	sequence	of	stream.	In	this	the	items	is	emitted	one	after	another	from	all
the	given	streams.NeverStream	:	This	stream	returns	a	non-terminating	stream	sequence,	which	can	be	used	for	infinite	duration.	this	stream	have	very	specific	and	limited	behavior.	as	per	my	knowledge	this	is	used	for	testing	purposes	only.RaceStream	:	This	stream	returns	a	stream	that	emits	all	of	its	items	before	any	other	streams	emits	its
items.RangeStream	:	This	stream	class	basically	used	when	we	want	to	returns	a	resulting	stream	that	emits	a	sequence	of	integers	within	a	particular	range	that	we	added.RepeatStream	:	This	stream	creates	a	stream	that	will	recreate	it	self	and	re-	listen	to	the	source	stream	for	the	specified	number	of	times	until	the	stream	terminates	successfully.
In	case	if	we	forget	to	specify	the	count	then	it	repeats	indefinitely.RetryStream	:	This	stream	is	similar	with	RepeatStream	only	the	difference	is	that	if	the	retry	count	is	not	specified,	it	retries	indefinitely	and	if	the	retry	count	is	met,	but	the	stream	has	not	terminated	successfully	then	all	of	the	errors	that	caused	the	failure	will	be	emitted	at	the
end.RetryWhenStream	:	This	stream	is	somehow	similar	with	the	RetryStream	the	difference	is	it	will	take	two	stream	as	an	argument	(streamFactory	and	retryWhenFactory).	if	the	retryWhenFactory	throws	an	error	or	returns	a	stream	that	emits	an	error	then	the	original	error	will	be	emitted	and	then	the	error	from	retryWhenFactory	will	be
emitted	if	it	is	not	same	as	the	original	error.SequenceEqualStream	:	This	stream	is	used	to	check	that	whether	the	two	streams	emit	the	same	sequence	of	items	or	not.SwitchLatestStream	:	This	stream	is	used	when	we	only	want	the	single	streams	items	that	emitted	most	recently	from	the	multiple	streams.TimerStream	:	This	stream	is	useful	when
we	want	to	emits	an	item	after	a	some	specific	amount	of	time.UsingStream	:	This	stream	is	used	to	create	a	way	so	we	can	instruct	an	stream	to	create	a	resource	for	us	that	exists	only	during	the	lifetime	of	the	stream	and	is	disposed	when	the	stream	terminates.ZipStream	:	This	stream	is	used	to	merge	all	the	specified	streams	into	a	one	single
stream	sequence	using	the	zipper	function	whenever	all	of	the	stream	sequences	have	produced	an	element	at	a	corresponding	index.Well	done!	Youve	survived	Part	1	of	Reactive	Programming	Using	RxDart	in	which	we	check	RxDarts	Subjects	and	Stream	Classes.All	explanation	and	example	code	in	this	part	is	based	on	rxdart	version	0.27.1.Now
youre	ready	to	check	Part	2	of	Reactive	Programming	Using	RxDart.	In	that	we	will	check	the	Extension	Methods	on	the	Stream	Classes	aka	Operators	of	Rx.

Rxdart	flutter.	Flutter	dart	define.	Rxdart.

