
	

https://wekirudojok.zuwufag.com/336494683152514859367295538845208621293257?texukobumesugutofevofunevesebaxobedelijisofiworiperutomaxegitegifovagudukopubizeximeninofunezopi=solotojoboguvimenuwapolupogokoluxekodifiwivamiwebodalufowimukotuneligabipogijekewunabuwofezevoxagidugobezezuduzakasobisirivujadumulenarukufalanofoworobafegufiketolakekarigelesenetuvefademufikeremalevafu&utm_kwd=if+then+else+statement+example&lanivulenogirepoposawusasuwupirevofugumu=winabejerekikaxusakosibejopunixuzaxotaxikewemovujovetesomubilavogadogewavotasewulodejukofizojarirowitirowelasifojelitis
















If	then	else	statement	example

Conditional	statements	are	used	to	perform	different	actions	based	on	different	conditions.	Conditional	Statements	Very	often	when	you	write	code,	you	want	to	perform	different	actions	for	different	decisions.	You	can	use	conditional	statements	in	your	code	to	do	this.	In	JavaScript	we	have	the	following	conditional	statements:	Use	if	to	specify	a
block	of	code	to	be	executed,	if	a	specified	condition	is	true	Use	else	to	specify	a	block	of	code	to	be	executed,	if	the	same	condition	is	false	Use	else	if	to	specify	a	new	condition	to	test,	if	the	first	condition	is	false	Use	switch	to	specify	many	alternative	blocks	of	code	to	be	executed	The	switch	statement	is	described	in	the	next	chapter.	The	if
Statement	Use	the	if	statement	to	specify	a	block	of	JavaScript	code	to	be	executed	if	a	condition	is	true.	Syntax	if	(condition)	{			//		block	of	code	to	be	executed	if	the	condition	is	true	}	Note	that	if	is	in	lowercase	letters.	Uppercase	letters	(If	or	IF)	will	generate	a	JavaScript	error.	Make	a	"Good	day"	greeting	if	the	hour	is	less	than	18:00:	if	(hour	<
18)	{			greeting	=	"Good	day";	}	The	result	of	greeting	will	be:	Try	it	Yourself	»	Use	the	else	statement	to	specify	a	block	of	code	to	be	executed	if	the	condition	is	false.	if	(condition)	{			//		block	of	code	to	be	executed	if	the	condition	is	true	}	else	{			//		block	of	code	to	be	executed	if	the	condition	is	false	}	If	the	hour	is	less	than	18,	create	a	"Good	day"
greeting,	otherwise	"Good	evening":	if	(hour	<	18)	{			greeting	=	"Good	day";	}	else	{			greeting	=	"Good	evening";	}	The	result	of	greeting	will	be:	Try	it	Yourself	»	The	else	if	Statement	Use	the	else	if	statement	to	specify	a	new	condition	if	the	first	condition	is	false.	Syntax	if	(condition1)	{			//		block	of	code	to	be	executed	if	condition1	is	true	}	else	if
(condition2)	{			//		block	of	code	to	be	executed	if	the	condition1	is	false	and	condition2	is	true	}	else	{			//		block	of	code	to	be	executed	if	the	condition1	is	false	and	condition2	is	false	}	If	time	is	less	than	10:00,	create	a	"Good	morning"	greeting,	if	not,	but	time	is	less	than	20:00,	create	a	"Good	day"	greeting,	otherwise	a	"Good	evening":	if	(time	<
10)	{			greeting	=	"Good	morning";	}	else	if	(time	<	20)	{			greeting	=	"Good	day";	}	else	{			greeting	=	"Good	evening";	}	The	result	of	greeting	will	be:	Try	it	Yourself	»	This	example	will	write	a	link	to	either	W3Schools	or	to	the	World	Wildlife	Foundation	(WWF).	By	using	a	random	number,	there	is	a	50%	chance	for	each	of	the	links.	let	text;	if
(Math.random()	<	0.5)	{			text	=	"Visit	W3Schools";	}	else	{			text	=	"Visit	WWF";	}	document.getElementById("demo").innerHTML	=	text;	Try	it	Yourself	»	Kenneth	Leroy	Busbee	The	if–then–else	construct,	sometimes	called	if-then,	is	a	two-way	selection	structure	common	across	many	programming	languages.	Although	the	syntax	varies	from
language	to	language,	the	basic	structure	looks	like:	If	(boolean	condition)	Then	(consequent)	Else	(alternative)	End	If	Discussion	We	are	going	to	introduce	the	control	structure	from	the	selection	category	that	is	available	in	every	high	level	language.	It	is	called	the	if	then	else	structure.	Asking	a	question	that	has	a	true	or	false	answer	controls	the	if
then	else	structure.	It	looks	like	this:	if	the	answer	to	the	question	is	true	then	do	this	else	because	it	is	false	do	this	In	most	languages,	the	question	(called	a	test	expression)	is	a	Boolean	expression.	The	Boolean	data	type	has	two	values	–	true	and	false.	Let’s	rewrite	the	structure	to	consider	this:	if	expression	is	true	then	do	this	else	because	it	is
false	do	this	Some	languages	use	reserved	words	of:	“if”,	“then”	and	“else”.	Many	eliminate	the	“then”.	Additionally	the	“do	this”	can	be	tied	to	true	and	false.	You	might	see	it	as:	if	expression	is	true	action	true	else	action	false	And	most	languages	infer	the	“is	true”	you	might	see	it	as:	if	expression	action	true	else	action	false	The	above	four	forms	of
the	control	structure	are	saying	the	same	thing.	The	else	word	is	often	not	used	in	our	English	speaking	today.	However,	consider	the	following	conversation	between	a	mother	and	her	child.	Child	asks,	“Mommy,	may	I	go	out	side	and	play?”	Mother	answers,	“If	your	room	is	clean	then	you	may	go	outside	and	play	or	else	you	may	go	sit	on	a	chair	for
five	minutes	as	punishment	for	asking	me	the	question	when	you	knew	your	room	was	dirty.”	Let’s	note	that	all	of	the	elements	are	present	to	determine	the	action	(or	flow)	that	the	child	will	be	doing.	Because	the	question	(your	room	is	clean)	has	only	two	possible	answers	(true	or	false)	the	actions	are	mutually	exclusive.	Either	the	child	1)	goes
outside	and	plays	or	2)	sits	on	a	chair	for	five	minutes.	One	of	the	actions	is	executed;	never	both	of	the	actions.	One	Choice	–	Implied	Two-Way	Selection	Often	the	programmer	will	want	to	do	something	only	if	the	expression	is	true,	that	is	with	no	false	action.	The	lack	of	a	false	action	is	also	referred	to	as	a	“null	else”	and	would	be	written	as:	if
expression	action	true	else	do	nothing	Because	the	“else	do	nothing”	is	implied,	it	is	usually	written	in	short	form	like:	if	expression	action	true	Key	Terms	if	then	else	A	two-way	selection	control	structure.	mutually	exclusive	Items	that	do	not	overlap.	Example:	true	or	false.	References	Conditional	statements	in	programming	are	used	to	control	the
flow	of	a	program	based	on	certain	conditions.	These	statements	allow	the	execution	of	different	code	blocks	depending	on	whether	a	specified	condition	evaluates	to	true	or	false,	providing	a	fundamental	mechanism	for	decision-making	in	algorithms.	In	this	article,	we	will	learn	about	the	basics	of	Conditional	Statements	along	with	their	different
types.What	are	Conditional	Statements	in	Programming?Conditional	statements	in	Programming,	also	known	as	decision-making	statements,	allow	a	program	to	perform	different	actions	based	on	whether	a	certain	condition	is	true	or	false.	They	form	the	backbone	of	most	programming	languages,	enabling	the	creation	of	complex,	dynamic
programs.5	Types	of	Conditional	Statements	in	ProgrammingConditional	statements	in	programming	allow	the	execution	of	different	pieces	of	code	based	on	whether	certain	conditions	are	true	or	false.	Here	are	five	common	types	of	conditional	statements:5	Types	of	Conditional	Statements	in	Programming1.	If	Conditional	Statement:The	if
statement	is	the	most	basic	form	of	conditional	statement.	It	checks	if	a	condition	is	true.	If	it	is,	the	program	executes	a	block	of	code.Syntax	of	If	Conditional	Statement:if	(condition)	{	//	code	to	execute	if	condition	is	true}if	condition	is	true,	the	if	code	block	executes.	If	false,	the	execution	moves	to	the	next	block	to	check.Use	Cases	of	If	Conditional
Statement:Checking	a	single	condition	and	executing	code	based	on	its	result.Performing	actions	based	on	user	input.Applications	of	If	Conditional	Statement:Validating	user	inputs.Basic	decision-making	in	algorithms.Advantages	of	If	Conditional	Statement:Simple	and	straightforward.Useful	for	handling	basic	decision	logic.Disadvantages	of	If
Conditional	Statement:Limited	to	checking	only	one	condition	at	a	time.Not	suitable	for	complex	decision-making.Implementation	of	If	Conditional	Statement:	C++	#include	using	namespace	std;	int	main()	{	int	x	=	10;	if	(x	>	0)	{	cout	0:	print("x	is	positive")	#	Print	a	message	if	x	is	positive	if	__name__	==	"__main__":	main()	C#	using	System;	class
Program	{	static	void	Main(string[]	args)	{	int	x	=	10;	if	(x	>	0)	{	Console.WriteLine("x	is	positive");	}	//	This	code	checks	if	the	variable	x	is	positive.	}	}	JavaScript	function	main()	{	let	x	=	10;	//	Check	if	x	is	greater	than	0	if	(x	>	0)	{	console.log("x	is	positive");	//	Print	a	message	if	x	is	positive	}	}	//	Call	the	main	function	main();	2.	If-Else	Conditional
Statement:The	if-else	statement	extends	the	if	statement	by	adding	an	else	clause.	If	the	condition	is	false,	the	program	executes	the	code	in	the	else	block.	Syntax	of	If-Else	Conditional	Statement:if	(condition)	{	//	code	to	execute	if	condition	is	true}	else	{	//	code	to	execute	if	condition	is	false}if	condition	is	true,	the	if	code	block	executes.	If	false,
the	execution	moves	to	the	else	block.Use	Cases	of	If-Else	Conditional	Statement:Executing	one	block	of	code	if	a	condition	is	true	and	another	block	if	it's	false.Handling	binary	decisions.Applications	of	If-Else	Conditional	Statement:Error	handling:	For	example,	displaying	an	error	message	if	user	input	is	invalid.Program	flow	control:	Directing
program	execution	based	on	conditions.Advantages	of	If-Else	Conditional	Statement:Handles	binary	decisions	efficiently.Clear	and	concise	syntax.Disadvantages	of	If-Else	Conditional	Statement:Limited	to	binary	decisions.May	become	verbose	in	complex	scenarios.Implementation	of	If-Else	Conditional	Statement:	C++	#include	using	namespace	std;
int	main()	{	int	x	=	-10;	if	(x	>	0)	{	cout	0:	print("x	is	positive")	else:	print("x	is	not	positive")	#	Call	the	main	function	to	execute	the	code	if	__name__	==	"__main__":	main()	C#	using	System;	class	Program	{	static	void	Main(string[]	args)	{	int	x	=	-10;	//	Check	if	x	is	greater	than	0	if	(x	>	0)	{	Console.WriteLine("x	is	positive");	}	else	{
Console.WriteLine("x	is	not	positive");	}	}	}	JavaScript	//	Main	function	function	main()	{	//	Define	the	value	of	x	const	x	=	-10;	//	Check	if	x	is	greater	than	0	if	(x	>	0)	{	console.log("x	is	positive");	}	else	{	console.log("x	is	not	positive");	}	}	//	Call	the	main	function	to	execute	the	program	main();	3.	if-Else	if	Conditional	Statement:The	if-else	if
statement	allows	for	multiple	conditions	to	be	checked	in	sequence.	If	the	if	condition	is	false,	the	program	checks	the	next	else	if	condition,	and	so	on.	Syntax	of	If-Else	if	Conditional	Statement:if	(condition1)	{	//	code	to	execute	if	condition1	is	true}	else	if	(condition2)	{	//	code	to	execute	if	condition2	is	true}	else	{	//	code	to	execute	if	all	conditions
are	false}In	else	if	statements,	the	conditions	are	checked	from	the	top-down,	if	the	first	block	returns	true,	the	second	and	the	third	blocks	will	not	be	checked,	but	if	the	first	if	block	returns	false,	the	second	block	will	be	checked.	This	checking	continues	until	a	block	returns	a	true	outcome.Use	Cases	of	If-Elif-Else	Conditional	Statement:Handling
multiple	conditions	sequentially.Implementing	multi-way	decision	logic.Applications	of	If-Elif-Else	Conditional	Statement:Implementing	menu	selection	logic.Categorizing	data	based	on	multiple	criteria.Advantages	of	If-Elif-Else	Conditional	Statement:Allows	handling	multiple	conditions	in	a	structured	manner.Reduces	the	need	for	nested	if-else
statements.Disadvantages	of	If-Elif-Else	Conditional	Statement:Can	become	lengthy	and	harder	to	maintain	with	many	conditions.The	order	of	conditions	matters;	incorrect	ordering	can	lead	to	unexpected	behavior.If-Else	if	Conditional	Statement	Implementation:	C++	#include	using	namespace	std;	int	main()	{	int	x	=	0;	if	(x	>	0)	{	cout	0)	{
console.log("x	is	positive");	}	//	If	not	positive,	check	if	the	number	is	negative	else	if	(x	<	0)	{	console.log("x	is	not	positive");	}	//	If	neither	positive	nor	negative	//	the	number	is	zero	else	{	console.log("x	is	not	zero");	}	4.	Switch	Conditional	Statement:The	switch	statement	is	used	when	you	need	to	check	a	variable	against	a	series	of	values.	It’s	often
used	as	a	more	readable	alternative	to	a	long	if-else	if	chain.	In	switch	expressions,	each	block	is	terminated	by	a	break	keyword.	The	statements	in	switch	are	expressed	with	cases.Switch	Conditional	Statement	Syntax:switch	(variable)	{	case	value1:	//	code	to	execute	if	variable	equals	value1	break;	case	value2:	//	code	to	execute	if	variable	equals
value2	break;	default:	//	code	to	execute	if	variable	doesn't	match	any	value}Use	Cases	of	Switch	Statement:Selecting	one	of	many	code	blocks	to	execute	based	on	the	value	of	a	variable.Handling	multiple	cases	efficiently.Applications	of	Switch	Statement:Processing	user	choices	in	a	menu.Implementing	state	machines.Advantages	of	Switch
Statement:Provides	a	clean	and	efficient	way	to	handle	multiple	cases.Improves	code	readability	when	dealing	with	many	conditions.Disadvantages	of	Switch	Statement:Limited	to	equality	comparisons,	cannot	use	range	checks	or	complex	conditions.Lack	of	fall-through	control	can	lead	to	unintentional	bugs	if	not	used	carefully.Switch	Conditional
Statement	Implementation:	C++	#include	;	using	namespace	std;	int	main()	{	int	x	=	2;	switch	(x)	{	case	1:	cout	0	?	"x	is	positive"	:	"x	is	not	positive";	//	Print	the	result	to	the	console	console.log(result);	Difference	between	Types	of	Conditional	Statements	in	Programming:Conditional	StatementPurposeUsageExampleifExecute	code	if	condition	is
trueSingle	conditionif	x	>	5:	print("x	is	greater	than	5")if-elseExecute	one	block	if	condition	is	true,	another	if	falseTwo	mutually	exclusive	possibilitiesif	x	>	5:	print("x	is	greater	than	5")	else:	print("x	is	not	greater	than	5")if-elif-elseExecute	based	on	multiple	conditionsMultiple	conditions,	sequential	evaluationpython	if	x	>	5:	print("x	is	greater	than
5")	elif	x	==	5:	print("x	is	equal	to	5")	else:	print("x	is	less	than	5")switch-caseSelect	one	of	many	code	blocks	to	execute	based	on	a	variableMatching	variable	against	multiple	casesjava	switch	(day)	{	case	1:	System.out.println("Monday");	break;	case	2:	System.out.println("Tuesday");	break;	default:	System.out.println("Unknown	day");	}Difference
between	If	Else	and	Switch	Case:Featureif-else	Statementswitch	StatementMultiple	ConditionsSupports	multiple	conditions	using	else	ifSupports	multiple	cases	using	case	statementsEquality	ComparisonCan	handle	complex	conditions	with	relational	operatorsTypically	checks	equality	with	case	valuesRange	ComparisonCan	handle	ranges	using
logical	operatorsTypically	handles	discrete	values,	not	suitable	for	rangesFall-ThroughExecutes	the	first	true	condition	and	exitsContinues	executing	cases	until	break	or	end.Default	CaseOptional	else	block	for	default	behaviordefault	case	for	unmatched	valuesExpression	TypeSupports	any	boolean	expression	in	the	conditionTypically	used	with
expressions	resulting	in	discrete	valuesReadability	and	MaintainabilityReadability	may	decrease	with	nested	conditionsReadability	can	be	maintained	for	multiple	casesUse	CasesSuitable	for	various	conditions	and	complex	logicSuitable	for	scenarios	with	distinct,	known	valuesBest	Practices	for	Conditional	Statements	in	Programming:Keep	it	simple:
Avoid	complex	conditions	that	are	hard	to	understand.	Break	them	down	into	simpler	parts	if	necessary.Use	meaningful	names:	Your	variable	and	function	names	should	make	it	clear	what	conditions	you’re	checking.Avoid	deep	nesting:	Deeply	nested	conditional	statements	can	be	hard	to	read	and	understand.	Consider	using	early	returns	or
breaking	your	code	into	smaller	functions.Comment	your	code:	Explain	what	your	conditions	are	checking	and	why.	This	can	be	especially	helpful	for	complex	conditions.In	conclusion,	Conditional	statements	are	a	fundamental	part	of	programming,	allowing	for	dynamic	and	interactive	programs.	By	understanding	and	using	them	effectively,	you	can
create	programs	that	are	more	efficient,	readable,	and	maintainable.	An	if	else	statement	in	programming	is	a	basic	programming	technique	that	allows	you	to	make	decisions	based	on	certain	conditions.	It	allows	your	program	to	execute	different	pieces	of	code	depending	on	whether	the	specified	condition	evaluates	to	true	or	false.	This	capability	is
crucial	in	building	dynamic	and	functional	applications.	Importance	of	If	Else	Statement:The	importance	of	if	else	statements	lies	in	their	ability	to	control	the	execution	of	a	program.	Using	if	else	statements	allows	developers	to	apply	logic	that	responds	to	situations,	making	programs	more	versatile	and	powerful.	Whether	manipulating	user
statements,	manipulating	data,	or	controlling	program	flow,	if	else	statements	play	an	important	role	in	programming.	Basic	Syntax	of	If	Else	Statement:Generally,	the	basic	syntax	of	if	felse	statements	follows	this	pattern:	if	(condition)	{	//	Code	block	to	execute	if	condition	is	true	}	else	{	//	Code	block	to	execute	if	condition	is	false	}	In	this	syntax:
The	`if`	keyword	begins	a	conditional	statement.The	condition	is	enclosed	in	parentheses	`()`.If	the	condition	evaluates	to	true,	the	code	block	immediately	following	the	`if`	statement	is	executed.If	the	condition	evaluates	to	false,	the	code	block	is	executed	in	the	`else`	statement.If	Else	Statement	in	C:Here	are	the	implementation	of	if	else	statement
in	C	language:	C	#include	int	main()	{	//	Declare	and	initialize	the	variable	num	int	num	=	10;	//	Check	if	num	is	greater	than	0	if	(num	>	0)	{	//	If	num	is	greater	than	0,	print	"Number	is	positive."	printf("Number	is	positive.");	}	else	{	//	If	num	is	not	greater	than	0,	print	"Number	is	non-positive."	printf("Number	is	non-positive.");	}	return	0;	}
OutputNumber	is	positive.If	Else	Statement	in	C++:Here	are	the	implementation	of	if	else	statement	in	C++	language:	C++	#include	using	namespace	std;	int	main()	{	//	Declare	and	initialize	the	variable	num	int	num	=	10;	//	Check	if	num	is	greater	than	0	if	(num	>	0)	{	//	If	num	is	greater	than	0,	print	"Number	is	positive."	cout	0)	{	//	If	num	is
greater	than	0,	print	"Number	is	positive."	console.log("Number	is	positive.");	}	else	{	//	If	num	is	not	greater	than	0,	print	"Number	is	non-positive."	console.log("Number	is	non-positive.");	}	OutputNumber	is	positive.This	if	else	statement	checks	if	the	variable	`num`	is	greater	than	0.	If	so,	the	function	says	"Numbers	are	good.";	Otherwise,	it	prints
"Number	is	non-positive".	ConclusionIf	else	statements	are	necessary	to	implement	conditional	logic	in	policy.	They	provide	tools	to	monitor	the	system	based	on	specific	scenarios,	enabling	developers	to	create	dynamic	and	functional	applications.	Understanding	how	to	properly	use	if	else	statements	is	key	to	mastering	programming	languages	like
C++,	Java,	etc.


