
	

https://bagopaxuwudavem.godoxevez.com/260503204925364462195430699183822742149473?dimixiwunejetosizarisu=mopewusuxibazawijulamujiwuguzigosejonilewewagadatunedibezetegolekafuxorakekoneviwupapapisegikesivevodagukeridufuraxiganuxenekawavokoviwumajuwakujovivobuduwekadalevivobejitovenagevevelutijepogetizizexawe&utm_kwd=jasper+report+java+dependencies&sasabizatiluwedagagubavufizepilefubiwu=nekokarexazimukodezadorogavudinusepagilisofelesinokunipedorefexomadijakuzakesevolexekupopapofapujoxenaw

JasperReports	is	an	open	source	reporting	library	that	enables	users	to	create	pixel-perfect	reports	that	can	be	printed	or	exported	in	many	formats	including	PDF,	HTML,	and	XLS.	In	this	article,	we’ll	explore	its	key	features	and	classes,	and	implement	examples	to	showcase	its	capabilities.	2.	Maven	Dependency	First,	we	need	to	add	the
jasperreports	dependency	to	our	pom.xml:	net.sf.jasperreports	jasperreports	6.20.0	The	latest	version	of	this	artifact	can	be	found	here.	3.	Report	Templates	Report	designs	are	defined	in	JRXML	files.	These	are	ordinary	XML	files	with	a	particular	structure	that	JasperReports	engine	can	interpret.	Let’s	now	have	a	look	at	only	the	relevant	structure
of	the	JRXML	files	–	to	understand	better	the	Java	part	of	the	report	generation	process,	which	is	our	primary	focus.	Let’s	create	a	simple	report	to	show	employee	information:	3.1.	Compiling	Reports	JRXML	files	need	to	be	compiled	so	the	report	engine	can	fill	them	with	data.	Let’s	perform	this	operation	with	the	help	of	the	JasperCompilerManager
class:	InputStream	employeeReportStream	=	getClass().getResourceAsStream("/employeeReport.jrxml");	JasperReport	jasperReport	=	JasperCompileManager.compileReport(employeeReportStream);	To	avoid	compiling	it	every	time,	we	can	save	it	to	a	file:	JRSaver.saveObject(jasperReport,	"employeeReport.jasper");	4.	Populating	Reports	The	most
common	way	to	fill	compiled	reports	is	with	records	from	a	database.	This	requires	the	report	to	contain	a	SQL	query	the	engine	will	execute	to	obtain	the	data.	First,	let’s	modify	our	report	to	add	a	SQL	query:	...	Now,	let’s	create	a	simple	data	source:	@Bean	public	DataSource	dataSource()	{	return	new	EmbeddedDatabaseBuilder()
.setType(EmbeddedDatabaseType.HSQL)	.addScript("classpath:employee-schema.sql")	.build();	}	Now,	we	can	fill	the	report:	JasperPrint	jasperPrint	=	JasperFillManager.fillReport(jasperReport,	null,	dataSource.getConnection());	Note	that	we	are	passing	null	to	the	second	argument	since	our	report	doesn’t	receive	any	parameters	yet.	4.1.
Parameters	Parameters	are	useful	for	passing	data	to	the	report	engine	that	it	can	not	find	in	its	data	source	or	when	data	changes	depending	on	different	runtime	conditions.	We	can	also	change	portions	or	even	the	entire	SQL	query	with	parameters	received	in	the	report	filling	operation.	First,	let’s	modify	the	report	to	receive	three	parameters:	//
...	Now,	let’s	add	a	title	section	to	show	the	title	parameter:	//	Next,	let’s	alter	the	query	to	use	the	minSalary	and	condition	parameters:	SELECT	*	FROM	EMPLOYEE	WHERE	SALARY	>=	$P{minSalary}	AND	$P!{condition}	Note	the	different	syntax	when	using	the	condition	parameter.	This	tells	the	engine	that	the	parameter	should	not	be	used
as	a	standard	PreparedStatement	parameter,	but	as	if	the	value	of	that	parameter	would	have	been	written	originally	in	the	SQL	query.	Finally,	let’s	prepare	the	parameters	and	fill	the	report:	Map	parameters	=	new	HashMap();	parameters.put("title",	"Employee	Report");	parameters.put("minSalary",	15000.0);	parameters.put("condition",	"
LAST_NAME	='Smith'	ORDER	BY	FIRST_NAME");	JasperPrint	jasperPrint	=	JasperFillManager.fillReport(...,	parameters,	...);	Note	that	the	keys	of	parameters	correspond	to	parameter	names	in	the	report.	If	the	engine	detects	a	parameter	is	missing,	it	will	obtain	the	value	from	defaultValueExpression	of	the	parameter	if	any.	5.	Exporting	To	export	a
report,	first,	we	instantiate	an	object	of	an	exporter	class	that	matches	the	file	format	we	need.	Then,	we	set	our	previous	filled	report	as	input	and	define	where	to	output	the	resulting	file.	Optionally,	we	can	set	corresponding	report	and	export	configuration	objects	to	customize	the	exporting	process.	5.1.	PDF	JRPdfExporter	exporter	=	new
JRPdfExporter();	exporter.setExporterInput(new	SimpleExporterInput(jasperPrint));	exporter.setExporterOutput(new	SimpleOutputStreamExporterOutput("employeeReport.pdf"));	SimplePdfReportConfiguration	reportConfig	=	new	SimplePdfReportConfiguration();	reportConfig.setSizePageToContent(true);
reportConfig.setForceLineBreakPolicy(false);	SimplePdfExporterConfiguration	exportConfig	=	new	SimplePdfExporterConfiguration();	exportConfig.setMetadataAuthor("baeldung");	exportConfig.setEncrypted(true);	exportConfig.setAllowedPermissionsHint("PRINTING");	exporter.setConfiguration(reportConfig);
exporter.setConfiguration(exportConfig);	exporter.exportReport();	JRXlsxExporter	exporter	=	new	JRXlsxExporter();	//	Set	input	and	output	...	SimpleXlsxReportConfiguration	reportConfig	=	new	SimpleXlsxReportConfiguration();	reportConfig.setSheetNames(new	String[]	{	"Employee	Data"	});	exporter.setConfiguration(reportConfig);
exporter.exportReport();	JRCsvExporter	exporter	=	new	JRCsvExporter();	//	Set	input	...	exporter.setExporterOutput(new	SimpleWriterExporterOutput("employeeReport.csv"));	exporter.exportReport();	HtmlExporter	exporter	=	new	HtmlExporter();	//	Set	input	...	exporter.setExporterOutput(new	SimpleHtmlExporterOutput("employeeReport.html"));
exporter.exportReport();	Subreports	are	nothing	more	than	a	standard	report	embedded	in	another	report.	First,	let’s	create	a	report	to	show	the	emails	of	an	employee:	Now,	let’s	modify	our	employee	report	to	include	the	previous	one:	Note	that	we	are	referencing	the	subreport	by	the	name	of	the	compiled	file	and	passing	it	the	idEmployee	and
current	report	connection	as	parameters.	Next,	let’s	compile	both	reports:	InputStream	employeeReportStream	=	getClass().getResourceAsStream("/employeeReport.jrxml");	JasperReport	jasperReport	=	JasperCompileManager.compileReport(employeeReportStream);	JRSaver.saveObject(jasperReport,	"employeeReport.jasper");	InputStream
emailReportStream	=	getClass().getResourceAsStream("/employeeEmailReport.jrxml");	JRSaver.saveObject(JasperCompileManager.compileReport(emailReportStream),	"employeeEmailReport.jasper");	Our	code	for	filling	and	exporting	the	report	doesn’t	require	modifications.	7.	Conditional	Display	With	printWhenExpression	In	addition,	we	can	use
printWhenExpression	to	conditionally	display	report	elements	based	on	certain	criteria.	This	means	that	elements	like	text	fields,	images,	and	bands	can	be	shown	or	hidden	dynamically	according	to	the	data	or	parameters	in	our	report.	Below	is	an	example	of	how	to	modify	the	JRXML	file	to	include	a	null	check	using	printWhenExpression.	We’ll
check	for	non-null	values	in	the	FIRST_NAME,	LAST_NAME,	and	SALARY	fields	before	rendering	the	content	in	the	detail	band:	This	expression	ensures	that	the	entire	content	of	the	band	will	only	be	displayed	if	all	these	fields	have	valid	(non-null)	values.	After	updating	the	JRXML	file,	we	need	to	compile	and	fill	the	report	as	before.	8.	Conclusion	In
this	article,	we	had	a	brief	look	at	the	core	features	of	the	JasperReports	library.	We	were	able	to	compile	and	populate	reports	with	records	from	a	database;	we	passed	parameters	to	change	the	data	shown	in	the	report	according	to	different	runtime	conditions,	embedded	subreports	and	exported	them	to	the	most	common	formats.	The	code
backing	this	article	is	available	on	GitHub.	Once	you're	logged	in	as	a	Baeldung	Pro	Member,	start	learning	and	coding	on	the	project.	Computer	software	installed	on	multiple	computing	platforms	"Cross-platform"	redirects	here.	For	the	railway	station	interchange,	see	cross-platform	interchange.	For	the	game	term,	see	cross-platform	play.	"Multi-
platform"	redirects	here.	For	the	mode	of	storytelling	in	television,	see	multi-platform	television.	Within	computing,	cross-platform	software	(also	called	multi-platform	software,	platform-agnostic	software,	or	platform-independent	software)	is	computer	software	that	is	designed	to	work	in	several	computing	platforms.[1]	Some	cross-platform	software
requires	a	separate	build	for	each	platform,	but	some	can	be	directly	run	on	any	platform	without	special	preparation,	being	written	in	an	interpreted	language	or	compiled	to	portable	bytecode	for	which	the	interpreters	or	run-time	packages	are	common	or	standard	components	of	all	supported	platforms.[2]	For	example,	a	cross-platform	application
may	run	on	Linux,	macOS	and	Microsoft	Windows.	Cross-platform	software	may	run	on	many	platforms,	or	as	few	as	two.	Some	frameworks	for	cross-platform	development	are	Codename	One,	ArkUI-X,	Kivy,	Qt,	GTK,	Flutter,	NativeScript,	Xamarin,	Apache	Cordova,	Ionic,	and	React	Native.[3]	Main	article:	Computing	platform	Platform	can	refer	to
the	type	of	processor	(CPU)	or	other	hardware	on	which	an	operating	system	(OS)	or	application	runs,	the	type	of	OS,	or	a	combination	of	the	two.[4]	An	example	of	a	common	platform	is	Android	which	runs	on	the	ARM	architecture	family.	Other	well-known	platforms	are	Linux/Unix,	macOS	and	Windows,	these	are	all	cross-platform.[4]	Applications
can	be	written	to	depend	on	the	features	of	a	particular	platform—either	the	hardware,	OS,	or	virtual	machine	(VM)	it	runs	on.	For	example,	the	Java	platform	is	a	common	VM	platform	which	runs	on	many	OSs	and	hardware	types.	A	hardware	platform	can	refer	to	an	instruction	set	architecture.	For	example:	ARM	or	the	x86	architecture.	These
machines	can	run	different	operating	systems.	Smartphones	and	tablets	generally	run	ARM	architecture,	these	often	run	Android	or	iOS	and	other	mobile	operating	systems.	A	software	platform	can	be	either	an	operating	system	(OS)	or	programming	environment,	though	more	commonly	it	is	a	combination	of	both.	An	exception	is	Java,	which	uses	an
OS-independent	virtual	machine	(VM)	to	execute	Java	bytecode.	Some	software	platforms	are:	Android	(ARM64)	ChromeOS	(ARM32,	ARM64,	IA-32,	x86-64)	Common	Language	Infrastructure	(CLI)	by	Microsoft,	implemented	in:	The	legacy	.NET	Framework	that	works	only	on	Microsoft	Windows.	The	newer	.NET	framework	(simply	called	".NET")	that
works	across	Microsoft	Windows,	macOS,	and	Linux.	Other	implementations	such	as	Mono	(formerly	by	Novell	and	Xamarin[5])	HarmonyOS	(ARM64,	RISC-V,	x86,	x64,	and	LoongArch)	iOS	((ARMv8-A))	iPadOS	(ARMv8-A)	Java	Linux	(Alpha,	ARC,	ARM,	C-Sky,	Hexagon,	LoongArch,	m68k,	Microblaze,	MIPS,	Nios	II,	OpenRISC,	PA-RISC,	PowerPC,
RISC-V,	s390,	SuperH,	SPARC,	x86,	Xtensa)	macOS	x86,	ARM	(Apple	silicon)	Microsoft	Windows	(IA-32,	x86-64,	ARM,	ARM64)	PlayStation	4	(x86),	PlayStation	3	(PowerPC)	and	PlayStation	Vita	(ARM)	Solaris	(SPARC,	x86)	SPARC	Unix	(many	platforms	since	1969)	Web	browsers	–	mostly	compatible	with	each	other,	running	JavaScript	web-apps	Xbox
Minor,	historical	AmigaOS	(m68k),	AmigaOS	4	(PowerPC),	AROS	(x86,	PowerPC,	m68k),	MorphOS	(PowerPC)	Atari	TOS,	MiNT	BSD	(many	platforms;	see	NetBSDnet,[clarification	needed]	for	example)	DOS-type	systems	on	the	x86:	MS-DOS,	PC	DOS,	DR-DOS,	FreeDOS	OS/2,	eComStation	BeOS	(PowerPC,	x86)	Main	article:	Java	(software	platform)
The	Java	language	is	typically	compiled	to	run	on	a	VM	that	is	part	of	the	Java	platform.	The	Java	virtual	machine	(Java	VM,	JVM)	is	a	CPU	implemented	in	software,	which	runs	all	Java	code.	This	enables	the	same	code	to	run	on	all	systems	that	implement	a	JVM.	Java	software	can	be	executed	by	a	hardware-based	Java	processor.	This	is	used	mostly
in	embedded	systems.	Java	code	running	in	the	JVM	has	access	to	OS-related	services,	like	disk	input/output	(I/O)	and	network	access,	if	the	appropriate	privileges	are	granted.	The	JVM	makes	the	system	calls	on	behalf	of	the	Java	application.	This	lets	users	to	decide	the	appropriate	protection	level,	depending	on	an	access-control	list	(ACL).	For
example,	disk	and	network	access	is	usually	enabled	for	desktop	applications,	but	not	for	browser-based	applets.	The	Java	Native	Interface	(JNI)	can	also	be	used	to	access	OS-specific	functions,	with	a	loss	of	portability.	Currently,	Java	Standard	Edition	software	can	run	on	Microsoft	Windows,	macOS,	several	Unix-like	OSs,	and	several	real-time
operating	systems	for	embedded	devices.	For	mobile	applications,	browser	plugins	are	used	for	Windows	and	Mac	based	devices,	and	Android	has	built-in	support	for	Java.	There	are	also	subsets	of	Java,	such	as	Java	Card	or	Java	Platform,	Micro	Edition,	designed	for	resource-constrained	devices.	For	software	to	be	considered	cross-platform,	it	must
function	on	more	than	one	computer	architecture	or	OS.	Developing	such	software	can	be	a	time-consuming	task	because	different	OSs	have	different	application	programming	interfaces	(API).	Software	written	for	one	OS	may	not	automatically	work	on	all	architectures	that	OS	supports.	Just	because	software	is	written	in	a	popular	programming
language	such	as	C	or	C++,	it	does	not	mean	it	will	run	on	all	OSs	that	support	that	language—or	even	on	different	versions	of	the	same	OS.	Web	applications	are	typically	described	as	cross-platform	because,	ideally,	they	are	accessible	from	any	web	browser:	the	browser	is	the	platform.	Web	applications	generally	employ	a	client–server	model,	but
vary	widely	in	complexity	and	functionality.	It	can	be	hard	to	reconcile	the	desire	for	features	with	the	need	for	compatibility.	Basic	web	applications	perform	all	or	most	processing	from	a	stateless	server,	and	pass	the	result	to	the	client	web	browser.	All	user	interaction	with	the	application	consists	of	simple	exchanges	of	data	requests	and	server
responses.	This	type	of	application	was	the	norm	in	the	early	phases	of	World	Wide	Web	application	development.	Such	applications	follow	a	simple	transaction	model,	identical	to	that	of	serving	static	web	pages.	Today,	they	are	still	relatively	common,	especially	where	cross-platform	compatibility	and	simplicity	are	deemed	more	critical	than
advanced	functionality.	Prominent	examples	of	advanced	web	applications	include	the	Web	interface	to	Gmail	and	Google	Maps.	Such	applications	routinely	depend	on	additional	features	found	only	in	the	more	recent	versions	of	popular	web	browsers.	These	features	include	Ajax,	JavaScript,	Dynamic	HTML,	SVG,	and	other	components	of	rich	web
applications.	Because	of	the	competing	interests	of	compatibility	and	functionality,	numerous	design	strategies	have	emerged.	Many	software	systems	use	a	layered	architecture	where	platform-dependent	code	is	restricted	to	the	upper-	and	lowermost	layers.	Graceful	degradation	attempts	to	provide	the	same	or	similar	functionality	to	all	users	and
platforms,	while	diminishing	that	functionality	to	a	least	common	denominator	for	more	limited	client	browsers.	For	example,	a	user	attempting	to	use	a	limited-feature	browser	to	access	Gmail	may	notice	that	Gmail	switches	to	basic	mode,	with	reduced	functionality	but	still	of	use.	Some	software	is	maintained	in	distinct	codebases	for	different
(hardware	and	OS)	platforms,	with	equivalent	functionality.	This	requires	more	effort	to	maintain	the	code,	but	can	be	worthwhile	where	the	amount	of	platform-specific	code	is	high.	This	strategy	relies	on	having	one	codebase	that	may	be	compiled	to	multiple	platform-specific	formats.	One	technique	is	conditional	compilation.	With	this	technique,
code	that	is	common	to	all	platforms	is	not	repeated.	Blocks	of	code	that	are	only	relevant	to	certain	platforms	are	made	conditional,	so	that	they	are	only	interpreted	or	compiled	when	needed.	Another	technique	is	separation	of	functionality,	which	disables	functionality	not	supported	by	browsers	or	OSs,	while	still	delivering	a	complete	application	to
the	user.	(See	also:	Separation	of	concerns.)	This	technique	is	used	in	web	development	where	interpreted	code	(as	in	scripting	languages)	can	query	the	platform	it	is	running	on	to	execute	different	blocks	conditionally.[6]	Third-party	libraries	attempt	to	simplify	cross-platform	capability	by	hiding	the	complexities	of	client	differentiation	behind	a
single,	unified	API,	at	the	expense	of	vendor	lock-in.	Responsive	web	design	(RWD)	is	a	Web	design	approach	aimed	at	crafting	the	visual	layout	of	sites	to	provide	an	optimal	viewing	experience—easy	reading	and	navigation	with	a	minimum	of	resizing,	panning,	and	scrolling—across	a	wide	range	of	devices,	from	mobile	phones	to	desktop	computer
monitors.	Little	or	no	platform-specific	code	is	used	with	this	technique.	Cross-platform	applications	need	much	more	integration	testing.	Some	web	browsers	prohibit	installation	of	different	versions	on	the	same	machine.	There	are	several	approaches	used	to	target	multiple	platforms,	but	all	of	them	result	in	software	that	requires	substantial
manual	effort	for	testing	and	maintenance.[7]	Techniques	such	as	full	virtualization	are	sometimes	used	as	a	workaround	for	this	problem.	Tools	such	as	the	Page	Object	Model	allow	cross-platform	tests	to	be	scripted	so	that	one	test	case	covers	multiple	versions	of	an	app.	If	different	versions	have	similar	user	interfaces,	all	can	be	tested	with	one
test	case.	Web	applications	are	becoming	increasingly	popular	but	many	computer	users	still	use	traditional	application	software	which	does	not	rely	on	a	client/web-server	architecture.	The	distinction	between	traditional	and	web	applications	is	not	always	clear.	Features,	installation	methods	and	architectures	for	web	and	traditional	applications
overlap	and	blur	the	distinction.	Nevertheless,	this	simplifying	distinction	is	a	common	and	useful	generalization.	Traditional	application	software	has	been	distributed	as	binary	files,	especially	executable	files.	Executables	only	support	the	platform	they	were	built	for—which	means	that	a	single	cross-platform	executable	could	be	very	bloated	with
code	that	never	executes	on	a	particular	platform.	Instead,	generally	there	is	a	selection	of	executables,	each	built	for	one	platform.	For	software	that	is	distributed	as	a	binary	executable,	such	as	that	written	in	C	or	C++,	there	must	be	a	software	build	for	each	platform,	using	a	toolset	that	translates—transcompiles—a	single	codebase	into	multiple
binary	executables.	For	example,	Firefox,	an	open-source	web	browser,	is	available	on	Windows,	macOS	(both	PowerPC	and	x86	through	what	Apple	Inc.	calls	a	Universal	binary),	Linux,	and	BSD	on	multiple	computer	architectures.	The	four	platforms	(in	this	case,	Windows,	macOS,	Linux,	and	BSD)	are	separate	executable	distributions,	although	they
come	largely	from	the	same	source	code.	In	rare	cases,	executable	code	built	for	several	platforms	is	combined	into	a	single	executable	file	called	a	fat	binary.	The	use	of	different	toolsets	may	not	be	enough	to	build	a	working	executables	for	different	platforms.	In	this	case,	programmers	must	port	the	source	code	to	the	new	platform.	For	example,
an	application	such	as	Firefox,	which	already	runs	on	Windows	on	the	x86	family,	can	be	modified	and	re-built	to	run	on	Linux	on	the	x86	(and	potentially	other	architectures)	as	well.	The	multiple	versions	of	the	code	may	be	stored	as	separate	codebases,	or	merged	into	one	codebase.	An	alternative	to	porting	is	cross-platform	virtualization,	where
applications	compiled	for	one	platform	can	run	on	another	without	modification	of	the	source	code	or	binaries.	As	an	example,	Apple's	Rosetta,	which	is	built	into	Intel-based	Macintosh	computers,	runs	applications	compiled	for	the	previous	generation	of	Macs	that	used	PowerPC	CPUs.	Another	example	is	IBM	PowerVM	Lx86,	which	allows	Linux/x86
applications	to	run	unmodified	on	the	Linux/Power	OS.	Example	of	cross-platform	binary	software:	The	LibreOffice	office	suite	is	built	for	Microsoft	Windows,	macOS,	Linux,	FreeBSD,	NetBSD,	OpenBSD,	Android,	iOS,	iPadOS,	ChromeOS,	web-based	Collabora	Online	and	many	others.[8][9]	Many	of	these	are	supported	on	several	hardware	platforms
with	processor	architectures	including	IA-32,	x86-64,	ARM	(ARMel,	ARMhf,	ARM64),	MIPS,	MIPSel,	PowerPC,	ppc64le,	and	S390x[9][10]	A	script	can	be	considered	to	be	cross-platform	if	its	interpreter	is	available	on	multiple	platforms	and	the	script	only	uses	the	facilities	built	into	the	language.	For	example,	a	script	written	in	Python	for	a	Unix-like
system	will	likely	run	with	little	or	no	modification	on	Windows,	because	Python	also	runs	on	Windows;	indeed	there	are	many	implementations	(e.g.	IronPython	for	.NET	Framework).	The	same	goes	for	many	of	the	open-source	scripting	languages.	Unlike	binary	executable	files,	the	same	script	can	be	used	on	all	computers	that	have	software	to
interpret	the	script.	This	is	because	the	script	is	generally	stored	in	plain	text	in	a	text	file.	There	may	be	some	trivial	issues,	such	as	the	representation	of	a	new	line	character.	Some	popular	cross-platform	scripting	languages	are:	bash	–	A	Unix	shell	commonly	run	on	Linux	and	other	modern	Unix-like	systems,	as	well	as	on	Windows	via	the	Cygwin
POSIX	compatibility	layer,	Git	for	Windows,	or	the	Windows	Subsystem	for	Linux.	Perl	–	First	released	in	1987.	Used	for	CGI	programming,	small	system	administration	tasks,	and	more.	PHP	–	Mostly	used	for	web	applications.	Python	–	A	language	which	focuses	on	rapid	application	development	and	ease	of	writing,	instead	of	run-time	efficiency.	Ruby
–	An	object-oriented	language	which	aims	to	be	easy	to	read.	Can	also	be	used	on	the	web	through	Ruby	on	Rails.	Tcl	–	A	dynamic	programming	language,	suitable	for	a	wide	range	of	uses,	including	web	and	desktop	applications,	networking,	administration,	testing	and	many	more.	Cross-platform	or	multi-platform	is	a	term	that	can	also	apply	to	video
games	released	on	a	range	of	video	game	consoles.	Examples	of	cross-platform	games	include:	Miner	2049er,	Tomb	Raider:	Legend,	FIFA	series,	NHL	series	and	Minecraft.	Each	has	been	released	across	a	variety	of	gaming	platforms,	such	as	the	Wii,	PlayStation	3,	Xbox	360,	personal	computers,	and	mobile	devices.	Some	platforms	are	harder	to
write	for	than	others,	requiring	more	time	to	develop	the	video	game	to	the	same	standard.	To	offset	this,	a	video	game	may	be	released	on	a	few	platforms	first,	then	later	on	others.	Typically,	this	happens	when	a	new	gaming	system	is	released,	because	video	game	developers	need	to	acquaint	themselves	with	its	hardware	and	software.	Some
games	may	not	be	cross-platform	because	of	licensing	agreements	between	developers	and	video	game	console	manufacturers	that	limit	development	to	one	particular	console.	As	an	example,	Disney	could	create	a	game	with	the	intention	of	release	on	the	latest	Nintendo	and	Sony	game	consoles.	Should	Disney	license	the	game	with	Sony	first,	it	may
be	required	to	release	the	game	solely	on	Sony's	console	for	a	short	time	or	indefinitely.	Main	articles:	Cross-platform	play	and	List	of	video	games	that	support	cross-platform	play	Several	developers	have	implemented	ways	to	play	games	online	while	using	different	platforms.	Psyonix,	Epic	Games,	Microsoft,	and	Valve	all	possess	technology	that
allows	Xbox	360	and	PlayStation	3	gamers	to	play	with	PC	gamers,	leaving	the	decision	of	which	platform	to	use	to	consumers.	The	first	game	to	allow	this	level	of	interactivity	between	PC	and	console	games	(Dreamcast	with	specially	produced	keyboard	and	mouse)	was	Quake	3.[11][12]	Games	that	feature	cross-platform	online	play	include	Rocket
League,	Final	Fantasy	XIV,	Street	Fighter	V,	Killer	Instinct,	Paragon	and	Fable	Fortune,	and	Minecraft	with	its	Better	Together	update	on	Windows	10,	VR	editions,	Pocket	Edition	and	Xbox	One.	Cross-platform	programming	is	the	practice	of	deliberately	writing	software	to	work	on	more	than	one	platform.	There	are	different	ways	to	write	a	cross-
platform	application.	One	approach	is	to	create	multiple	versions	of	the	same	software	in	different	source	trees—in	other	words,	the	Microsoft	Windows	version	of	an	application	might	have	one	set	of	source	code	files	and	the	Macintosh	version	another,	while	a	FOSS	*nix	system	might	have	a	third.	While	this	is	straightforward,	compared	to
developing	for	only	one	platform	it	can	cost	much	more	to	pay	a	larger	team	or	release	products	more	slowly.	It	can	also	result	in	more	bugs	to	be	tracked	and	fixed.	Another	approach	is	to	use	software	that	hides	the	differences	between	the	platforms.	This	abstraction	layer	insulates	the	application	from	the	platform.	Such	applications	are	platform
agnostic.	Applications	that	run	on	the	JVM	are	built	this	way.	Some	applications	mix	various	methods	of	cross-platform	programming	to	create	the	final	application.	An	example	is	the	Firefox	web	browser,	which	uses	abstraction	to	build	some	of	the	lower-level	components,	with	separate	source	subtrees	for	implementing	platform-specific	features
(like	the	GUI),	and	the	implementation	of	more	than	one	scripting	language	to	ease	software	portability.	Firefox	implements	XUL,	CSS	and	JavaScript	for	extending	the	browser,	in	addition	to	classic	Netscape-style	browser	plugins.	Much	of	the	browser	itself	is	written	in	XUL,	CSS,	and	JavaScript.	There	are	many	tools[13][14]	available	to	help	the
process	of	cross-platform	programming:	8th:	a	development	language	which	utilizes	Juce	as	its	GUI	layer.	It	currently	supports	Android,	iOS,	Windows,	macOS,	Linux	and	Raspberry	Pi.	Anant	Computing:	A	mobile	application	platform	that	works	in	all	Indian	languages,	including	their	keyboards,	and	also	supports	AppWallet	and	native	performance	in
all	OSs.	AppearIQ:	a	framework	that	supports	the	workflow	of	app	development	and	deployment	in	an	enterprise	environment.	Natively	developed	containers	present	hardware	features	of	the	mobile	devices	or	tablets	through	an	API	to	HTML5	code	thus	facilitating	the	development	of	mobile	apps	that	run	on	different	platforms.	Boden:	a	UI
framework	written	in	C++.	Cairo:	a	free	software	library	used	to	provide	a	vector	graphics-based,	device-independent	API.	It	is	designed	to	provide	primitives	for	2-dimensional	drawing	across	a	number	of	different	backends.	Cairo	is	written	in	C	and	has	bindings	for	many	programming	languages.	Cocos2d:	an	open-source	toolkit	and	game	engine	for
developing	2D	and	simple	3D	cross-platform	games	and	applications.	Codename	One:	an	open-source	Write	Once	Run	Anywhere	(WORA)	framework	for	Java	and	Kotlin	developers.	Delphi:	an	IDE	which	uses	a	Pascal-based	language	for	development.	It	supports	Android,	iOS,	Windows,	macOS,	Linux.	Ecere	SDK:	a	GUI	and	2D/3D	graphics	toolkit	and
IDE,	written	in	eC	and	with	support	for	additional	languages	such	as	C	and	Python.	It	supports	Linux,	FreeBSD,	Windows,	Android,	macOS	and	the	Web	through	Emscripten	or	Binaryen	[Wikidata]	(WebAssembly).	Eclipse:	an	open-source	development	environment.	Implemented	in	Java	with	a	configurable	architecture	which	supports	many	tools	for
software	development.	Add-ons	are	available	for	several	languages,	including	Java	and	C++.	FLTK:	an	open-source	toolkit,	but	more	lightweight	because	it	restricts	itself	to	the	GUI.	Flutter:	A	cross-platform	UI	framework	for	IOS,	Android,	Mac,	Windows	and	developed	by	Google.	fpGUI:	An	open-source	widget	toolkit	that	is	completely	implemented
in	Object	Pascal.	It	currently	supports	Linux,	Windows	and	a	bit	of	Windows	CE.	GeneXus:	A	Windows	rapid	software	development	solution	for	cross-platform	application	creation	and	deployment	based	on	knowledge	representation	and	supporting	C#,	COBOL,	Java	including	Android	and	BlackBerry	smart	devices,	Objective-C	for	Apple	mobile	devices,
RPG,	Ruby,	Visual	Basic,	and	Visual	FoxPro.	GLBasic:	A	BASIC	dialect	and	compiler	that	generates	C++	code.	It	includes	cross	compilers	for	many	platforms	and	supports	numerous	platform	(Windows,	Mac,	Linux,	Android,	iOS	and	some	exotic	handhelds).	Godot:	an	SDK	which	uses	Godot	Engine.	GTK+:	An	open-source	widget	toolkit	for	Unix-like
systems	with	X11	and	Microsoft	Windows.	Haxe:	An	open-source	language.	Juce:	An	application	framework	written	in	C++,	used	to	write	native	software	on	numerous	systems	(Microsoft	Windows,	POSIX,	macOS),	with	no	change	to	the	code.	Kivy:	an	open-source	cross-platform	UI	framework	written	in	Python.	It	supports	Android,	iOS,	Linux,	OS	X,
Windows	and	Raspberry	Pi.	LEADTOOLS:	Cross-platform	SDK	libraries	to	integrate	recognition,	document,	medical,	imaging,	and	multimedia	technologies	into	Windows,	iOS,	macOS,	Android,	Linux	and	web	applications.[15]	LiveCode:	a	commercial	cross-platform	rapid	application	development	language	inspired	by	HyperTalk.	Lazarus:	A
programming	environment	for	the	FreePascal	Compiler.	It	supports	the	creation	of	self-standing	graphical	and	console	applications	and	runs	on	Linux,	MacOSX,	iOS,	Android,	WinCE,	Windows	and	WEB.	Max/MSP:	A	visual	programming	language	that	encapsulates	platform-independent	code	with	a	platform-specific	runtime	environment	into
applications	for	macOS	and	Windows	A	cross-platform	Android	runtime.	It	allows	unmodified	Android	apps	to	run	natively	on	iOS	and	macOS	Mendix:	a	cloud-based	low-code	application	development	platform.	MonoCross:	an	open-source	model–view–controller	design	pattern	where	the	model	and	controller	are	cross-platform	but	the	view	is	platform-
specific.[16]	Mono:	An	open-source	cross-platform	version	of	Microsoft	.NET	(a	framework	for	applications	and	programming	languages)	MoSync:	an	open-source	SDK	for	mobile	platform	app	development	in	the	C++	family.	Mozilla	application	framework:	an	open-source	platform	for	building	macOS,	Windows	and	Linux	applications.	OpenGL:	a	3D
graphics	library.	Pixel	Game	Maker	MV:	A	proprietary	2D	game	development	software	for	Windows	for	developing	Windows	and	Nintendo	Switch	games.	PureBasic:	a	proprietary	language	and	IDE	for	building	macOS,	Windows	and	Linux	applications.	ReNative:	The	universal	development	SDK	to	build	multi-platform	projects	with	React	Native.
Includes	latest	iOS,	tvOS,	Android,	Android	TV,	Web,	Tizen	TV,	Tizen	Watch,	LG	webOS,	macOS/OSX,	Windows,	KaiOS,	Firefox	OS	and	Firefox	TV	platforms.	Qt:	an	application	framework	and	widget	toolkit	for	Unix-like	systems	with	X11,	Microsoft	Windows,	macOS,	and	other	systems—available	under	both	proprietary	and	open-source	licenses.
Simple	and	Fast	Multimedia	Library:	A	multimedia	C++	API	that	provides	low	and	high	level	access	to	graphics,	input,	audio,	etc.	Simple	DirectMedia	Layer:	an	open-source	multimedia	library	written	in	C	that	creates	an	abstraction	over	various	platforms'	graphics,	sound,	and	input	APIs.	It	runs	on	OSs	including	Linux,	Windows	and	macOS	and	is
aimed	at	games	and	multimedia	applications.	Smartface:	a	native	app	development	tool	to	create	mobile	applications	for	Android	and	iOS,	using	WYSIWYG	design	editor	with	JavaScript	code	editor.	Tcl/Tk	Titanium	Mobile:	open	source	cross-platform	framework	for	Android	and	iOS	development.	U++:	a	C++	GUI	framework	for	performance.	It
includes	a	set	of	libraries	(GUI,	SQL,	etc..),	and	IDE.	It	supports	Windows,	macOS	and	Linux.	Unity:	Another	cross-platform	SDK	which	uses	Unity	Engine.	Uno	Platform:	Windows,	macOS,	iOS,	Android,	WebAssembly	and	Linux	using	C#.	Unreal:	A	cross-platform	SDK	which	uses	Unreal	Engine.	V-Play	Engine:	V-Play	is	a	cross-platform	development
SDK	based	on	the	popular	Qt	framework.	V-Play	apps	and	games	are	created	within	Qt	Creator.	WaveMaker:	A	low-code	development	tool	to	create	responsive	web	and	hybrid	mobile	(Android	&	iOS)	applications.	WinDev:	an	Integrated	Development	Environment	for	Windows,	Linux,	.Net	and	Java,	and	web	browers.	Optimized	for	business	and
industrial	applications.	wxWidgets:	an	open-source	widget	toolkit	that	is	also	an	application	framework.[17]	It	runs	on	Unix-like	systems	with	X11,	Microsoft	Windows	and	macOS.	Xojo:	a	RAD	IDE	that	uses	an	object-oriented	programming	language	to	compile	desktop,	web	and	iOS	apps.	Xojo	supports	natively	compiling	to	Windows,	macOS,	iOS	and
Linux,	and	can	also	create	compiled	web	apps	that	are	able	to	be	run	as	standalone	servers	or	through	CGI.	This	section	possibly	contains	original	research.	Please	improve	it	by	verifying	the	claims	made	and	adding	inline	citations.	Statements	consisting	only	of	original	research	should	be	removed.	(March	2025)	(Learn	how	and	when	to	remove	this
message)	There	are	many	challenges	when	developing	cross-platform	software:	Testing	cross-platform	applications	may	be	considerably	more	complicated,	since	different	platforms	can	exhibit	slightly	different	behaviors	or	subtle	bugs.	This	problem	has	led	some	developers	to	deride	cross-platform	development	as	"write	once,	debug	everywhere",	a
take	on	Sun	Microsystems'	"write	once,	run	anywhere"	marketing	slogan.	Developers	are	often	restricted	to	using	the	lowest	common	denominator	subset	of	features	which	are	available	on	all	platforms.	This	may	hinder	the	application's	performance	or	prohibit	developers	from	using	the	most	advanced	features	of	each	platform.	Different	platforms
often	have	different	user	interface	conventions,	which	cross-platform	applications	do	not	always	accommodate.	For	example,	applications	developed	for	macOS	and	GNOME	are	supposed	to	place	the	most	important	button	on	the	right-hand	side	of	a	window	or	dialog,	whereas	Microsoft	Windows	and	KDE	have	the	opposite	convention.	Though	many
of	these	differences	are	subtle,	a	cross-platform	application	which	does	not	conform	to	these	conventions	may	feel	clunky	or	alien	to	the	user.	When	working	quickly,	such	opposing	conventions	may	even	result	in	data	loss,	such	as	in	a	dialog	box	confirming	whether	to	save	or	discard	changes.	Scripting	languages	and	VM	bytecode	must	be	translated
into	native	executable	code	each	time	they	are	used,	imposing	a	performance	penalty.	This	penalty	can	be	alleviated	using	techniques	like	just-in-time	compilation;	but	some	computational	overhead	may	be	unavoidable.	Different	platforms	require	the	use	of	native	package	formats	such	as	RPM	and	MSI.	Multi-platform	installers	such	as
InstallAnywhere	address	this	need.	Cross-platform	execution	environments	may	suffer	cross-platform	security	flaws,	creating	a	fertile	environment	for	cross-platform	malware.[18]	Operating	context	List	of	widget	toolkits	Hardware	virtualization	Language	binding	Source-to-source	compiler	Binary-code	compatibility	Comparison	of	user	features	of
messaging	platforms	^	"Design	Guidelines:	Glossary".	java.sun.com.	Archived	from	the	original	on	2012-02-13.	Retrieved	2011-10-19.	^	"SDD	Technology	blog:	Definition	of	cross	platform".	SDD	Technology.	Retrieved	2020-10-18.	^	Lee	P	Richardson	(2016-02-16).	"Xamarin	vs	Ionic:	A	Mobile,	Cross	Platform,	Shootout".	^	a	b	"Platform	Definition".
The	Linux	Information	Project.	Retrieved	2014-03-27.	^	"About	Mono".	mono-project.com.	Retrieved	2015-12-17.	^	Corti,	Sascha	P.	(October	2011).	"Browser	and	Feature	Detection".	MSDN	Magazine.	Retrieved	28	January	2014.	^	Choudhary,	S.R.	(2014).	"Cross-platform	testing	and	maintenance	of	web	and	mobile	applications".	Companion
Proceedings	of	the	36th	International	Conference	on	Software	Engineering.	pp.	642–645.	doi:10.1145/2591062.2591097.	hdl:1853/53588.	ISBN	9781450327688.	S2CID	1903037.	^	Mehrotra,	Pranob	(2020-12-01).	"Collabora	Office	suite	gets	a	new	layout	for	Android	tablets	and	Chromebooks".	XDA-Developers.	Retrieved	2021-01-15.	Collabora	Office
is	a	popular	open-source	alternative	to	the	Microsoft	Office	suite.	It's	based	on	LibreOffice,	and	it's	available	on	a	variety	of	platforms,	including	Windows,	Linux,	iOS,	and	Android.	This	year	in	July,	a	major	update	for	the	office	suite	brought	support	for	Chrome	OS	devices.	^	"Collabora	Office	on	iOS	and	Android	Just	got	Better!".	Adfinis.	2020-12-15.
Retrieved	2021-01-15.	...touch	optimized	interfaces:	one	for	tablets	and	one	for	phone	screens.	...(iOS,	iPadOS,	Chromebooks,	Android).	^	"Nextcloud	Ubuntu	Appliance	adds	Collabora	Online	to	Raspberry	Pi	image".	MuyLinux.	2021-03-26.	Retrieved	2021-03-30.	the	first	viable	self-hosted	web	office	solution	for	the	popular	Raspberry	Pi	4	platform	^
Cribba.	Quake	III	Arena,	Giant	Bombcast,	February	15,	2013.	^	A	Closer	Look	At	The	Dreamcast	Internet	Starter	Kit	^	The	GUI	Toolkit,	Framework	Page	^	"Platform	Independent	FAQ".	Archived	from	the	original	on	2008-08-16.	Retrieved	2009-04-25.	^	"Cross-Platform	SDK	Libraries	for	Recognition,	Document,	Medical,	Imaging,	and	Multimedia".
www.leadtools.com.	Retrieved	2021-03-03.	^	"12	benefits	of	Xamarin	Cross-platform	app	development".	HeadWorks.	15	Mar	2019.	^	WxWidgets	Description	^	Warren,	Tom	(2020-01-14).	"Microsoft	bids	farewell	to	Windows	7	and	the	millions	of	PCs	that	still	run	it".	The	Verge.	Retrieved	2020-02-06.	Retrieved	from	"	This	tutorial	will	guide	you
through	the	process	of	creating	a	Jasper	Report	using	Spring	Boot.Jasper	Reports	is	an	open-source	reporting	library	that	allows	developers	to	generate	rich,	dynamic,	and	customizable	reports.	It	provides	a	powerful	set	of	features	for	designing	and	rendering	reports	in	various	formats,	such	as	PDF,	HTML,	Excel,	etc.	On	the	other	hand,	Spring	Boot
is	a	popular	Java	framework	for	building	standalone,	production-grade	applications	with	ease.Our	goal	is	to	create	a	web	application	that	generates	a	report	using	Jasper	Reports.	The	application	will	utilize	the	Spring	Boot	framework	to	handle	the	backend	operations	and	integrate	Jasper	Reports	for	report	generation.We	will	start	by	setting	up	a	new
Spring	Boot	project	and	configuring	the	necessary	dependencies.	Then,	we	will	design	a	report	template	using	the	JasperSoft	Studio,	a	powerful	visual	report	designer	for	Jasper	Reports.	Next,	we	will	fetch	data	from	a	data	source	(e.g.,	a	database)	to	populate	the	report.	Once	the	data	is	retrieved,	we	will	generate	the	report	using	the	Jasper	Reports
API.	Finally,	we	will	display	the	generated	report	in	a	web	application	and	explore	options	to	export	the	report	to	different	formats.Throughout	the	tutorial,	we	will	provide	code	examples	and	explanations	to	help	you	understand	each	step	clearly.	By	the	end,	you	will	have	a	working	Spring	Boot	application	that	is	creating	and	displaying	Jasper
Report.To	begin,	we	need	to	set	up	a	new	Spring	Boot	project.	You	can	use	your	preferred	IDE	or	create	the	project	from	scratch	using	Maven	or	Gradle.Here’s	an	example	of	a	basic	pom.xml	file	for	a	Maven-based	Spring	Boot	project:	org.springframework.boot	spring-boot-starter-parent	2.5.2	org.springframework.boot	spring-boot-starter-web	Make
sure	to	adjust	the	Spring	Boot	version	according	to	your	preference	or	project	requirements.In	this	section,	we	will	add	the	necessary	dependencies	to	integrate	Jasper	Reports	into	our	Spring	Boot	project.Jasper	Reports	provides	a	set	of	libraries	and	tools	for	report	generation.	To	include	these	dependencies	in	our	project,	we	need	to	update	the
pom.xml	file	with	the	following	Maven	dependencies:	org.springframework.boot	spring-boot-starter-web	net.sf.jasperreports	jasperreports	6.17.0	net.sf.jasperreports	jasperreports-fonts	6.17.0	In	the	above	example,	we	have	added	the	Spring	Boot	Web	Starter	dependency	as	well	as	the	Jasper	Reports	dependencies.	The	jasperreports	artifact	provides
the	core	libraries	for	working	with	Jasper	Reports,	and	the	jasperreports-fonts	artifact	includes	additional	fonts	that	might	be	needed	for	rendering	reports.Once	you	have	added	the	dependencies,	save	the	pom.xml	file	and	let	Maven	download	the	necessary	JAR	files.Now	that	we	have	the	dependencies	set	up,	let’s	move	on	to	designing	the	report
template	using	JasperSoft	Studio	in	the	next	section.In	this	section,	we	will	design	the	report	template	using	JasperSoft	Studio.	JasperSoft	Studio	is	a	visual	report	designer	that	allows	us	to	create	and	customize	the	layout	of	our	reports.To	get	started,	you	can	download	and	install	JasperSoft	Studio	from	the	official	website.	Once	installed,	follow	these
steps:Open	JasperSoft	Studio	and	create	a	new	project.Right-click	on	the	project	and	select	“New	Jasper	Report.”Provide	a	name	for	the	report	and	choose	the	desired	template	(e.g.,	Blank	A4).In	the	report	editor,	you	can	add	elements	such	as	text	fields,	images,	tables,	and	charts	to	design	the	report	layout.Customize	the	appearance	of	the	elements
by	adjusting	properties	like	font,	color,	size,	etc.Bind	the	report	elements	to	data	fields	by	dragging	and	dropping	them	from	the	“Palette”	onto	the	report.Save	the	report	template.Once	you	have	designed	the	report	template,	we	need	to	import	it	into	our	Spring	Boot	project.	Create	a	new	directory	src/main/resources/reports	and	place	the	report
template	file	(with	the	.jrxml	extension)	inside	it.In	this	section,	we	will	fetch	data	from	a	data	source	to	populate	the	report.	For	simplicity,	let’s	assume	we	have	a	list	of	employees	and	we	want	to	display	their	details	in	the	report.First,	create	an	Employee	class	representing	the	employee	entity:	public	class	Employee	{	private	String	firstName;
private	String	lastName;	private	String	designation;	//	Getters	and	setters	}	Next,	create	a	service	or	repository	class	to	fetch	the	employee	data.	For	demonstration	purposes,	we	will	create	a	simple	service	class:	@Service	public	class	EmployeeService	{	public	List	getAllEmployees()	{	//	Fetch	employee	data	from	a	data	source	(e.g.,	database)	//
Return	the	list	of	employees	}	}	Make	sure	to	inject	the	EmployeeService	wherever	you	need	to	retrieve	the	employee	data.In	this	section,	we	will	generate	the	Jasper	Report	using	the	report	template	and	the	fetched	employee	data.First,	let’s	create	a	service	class	responsible	for	generating	the	report:	@Service	public	class	ReportService	{	private
final	EmployeeService	employeeService;	public	ReportService(EmployeeService	employeeService)	{	this.employeeService	=	employeeService;	}	public	byte[]	generateReport()	throws	Exception	{	List	employees	=	employeeService.getAllEmployees();	//	Load	the	report	template	InputStream	reportTemplate	=
getClass().getResourceAsStream("/reports/employeeReport.jrxml");	//	Compile	the	report	template	JasperReport	jasperReport	=	JasperCompileManager.compileReport(reportTemplate);	//	Convert	the	list	of	employees	to	a	JRBeanCollectionDataSource	JRBeanCollectionDataSource	dataSource	=	new	JRBeanCollectionDataSource(employees);	//
Generate	the	report	using	the	compiled	template	and	data	source	JasperPrint	jasperPrint	=	JasperFillManager.fillReport(jasperReport,	null,	dataSource);	//	Export	the	report	to	a	byte	array	(PDF	format)	byte[]	reportBytes	=	JasperExportManager.exportReportToPdf(jasperPrint);	return	reportBytes;	}	}	In	the	above	example,	we	inject	the
EmployeeService	to	fetch	the	employee	data.	We	load	the	report	template,	compile	it	using	JasperCompileManager,	and	convert	the	list	of	employees	to	a	JRBeanCollectionDataSource.	Finally,	we	generate	the	report	using	JasperFillManager	and	export	it	to	a	byte	array	(PDF	format)	using	JasperExportManager.Note:	In	a	real-world	scenario,	you	may
need	to	pass	additional	parameters	to	the	report	or	apply	more	complex	logic.	The	above	code	provides	a	basic	example	to	get	you	started.In	this	section,	we	will	create	a	Spring	MVC	controller	to	handle	the	report	generation	and	display	it	in	a	web	application.First,	let’s	create	the	controller	class:	@Controller	public	class	ReportController	{	private
final	ReportService	reportService;	public	ReportController(ReportService	reportService)	{	this.reportService	=	reportService;	}	@GetMapping("/report")	public	void	generateReport(HttpServletResponse	response)	throws	Exception	{	byte[]	reportBytes	=	reportService.generateReport();	//	Set	the	response	headers
response.setContentType("application/pdf");	response.setHeader("Content-Disposition",	"inline;	filename=employeeReport.pdf");	//	Write	the	report	bytes	to	the	response	output	stream	OutputStream	outputStream	=	response.getOutputStream();	outputStream.write(reportBytes);	outputStream.flush();	}	}In	the	above	example,	we	create	a
generateReport	method	mapped	to	the	/report	URL	using	the	@GetMapping	annotation.	Inside	the	method,	we	obtain	the	generated	report	bytes	from	the	ReportService	and	set	the	necessary	response	headers.	Finally,	we	write	the	report	bytes	to	the	response	output	stream.Now,	when	you	access	the	/report	URL	in	your	web	application,	it	will
generate	and	display	the	Jasper	Report.In	the	next	section,	we	will	explore	options	to	export	the	report	to	different	formats.In	this	section,	we	will	enhance	our	application	to	export	the	report	to	different	formats,	such	as	Excel	and	HTML.First,	let’s	modify	the	ReportService	to	include	methods	for	generating	reports	in	different	formats:	@Service
public	class	ReportService	{	//	Existing	code	public	byte[]	generateReportAsExcel()	throws	Exception	{	List	employees	=	employeeService.getAllEmployees();	InputStream	reportTemplate	=	getClass().getResourceAsStream("/reports/employeeReport.jrxml");	JasperReport	jasperReport	=	JasperCompileManager.compileReport(reportTemplate);
JRBeanCollectionDataSource	dataSource	=	new	JRBeanCollectionDataSource(employees);	JasperPrint	jasperPrint	=	JasperFillManager.fillReport(jasperReport,	null,	dataSource);	byte[]	reportBytes	=	JasperExportManager.exportReportToPdf(jasperPrint);	return	reportBytes;	}	public	byte[]	generateReportAsHtml()	throws	Exception	{	List	employees
=	employeeService.getAllEmployees();	InputStream	reportTemplate	=	getClass().getResourceAsStream("/reports/employeeReport.jrxml");	JasperReport	jasperReport	=	JasperCompileManager.compileReport(reportTemplate);	JRBeanCollectionDataSource	dataSource	=	new	JRBeanCollectionDataSource(employees);	JasperPrint	jasperPrint	=
JasperFillManager.fillReport(jasperReport,	null,	dataSource);	byte[]	reportBytes	=	JasperExportManager.exportReportToPdf(jasperPrint);	return	reportBytes;	}	}In	the	above	example,	we	added	two	new	methods:	generateReportAsExcel	and	generateReportAsHtml.	These	methods	follow	a	similar	pattern	to	the	existing	generateReport	method,	but
export	the	report	to	Excel	and	HTML	formats,	respectively,	using	the	JasperExportManager.exportReportToXlsx	and	JasperExportManager.exportReportToHtml	methods.Next,	modify	the	ReportController	to	handle	the	export	functionality:	@Controller	public	class	ReportController	{	//	Existing	code	@GetMapping("/report/excel")	public	void
generateReportAsExcel(HttpServletResponse	response)	throws	Exception	{	byte[]	reportBytes	=	reportService.generateReportAsExcel();	response.setContentType("application/vnd.openxmlformats-officedocument.spreadsheetml.sheet");	response.setHeader("Content-Disposition",	"attachment;	filename=employeeReport.xlsx");	OutputStream
outputStream	=	response.getOutputStream();	outputStream.write(reportBytes);	outputStream.flush();	}	@GetMapping("/report/html")	public	void	generateReportAsHtml(HttpServletResponse	response)	throws	Exception	{	byte[]	reportBytes	=	reportService.generateReportAsHtml();	response.setContentType("text/html");
response.setHeader("Content-Disposition",	"attachment;	filename=employeeReport.html");	OutputStream	outputStream	=	response.getOutputStream();	outputStream.write(reportBytes);	outputStream.flush();	}	}In	the	above	example,	we	added	two	new	methods	in	the	ReportController:	generateReportAsExcel	and	generateReportAsHtml.	These
methods	handle	the	export	of	the	report	to	Excel	and	HTML	formats,	respectively.	We	set	the	appropriate	response	headers	based	on	the	desired	format	and	write	the	report	bytes	to	the	response	output	stream.Now,	you	can	access	the	/report/excel	and	/report/html	URLs	in	your	web	application	to	download	the	report	in	Excel	and	HTML	formats,
respectively.In	this	tutorial,	we	have	learned	about	creating	a	Jasper	Report	with	Spring	Boot.	We	started	by	setting	up	a	Spring	Boot	project	and	adding	the	necessary	dependencies	for	Jasper	Reports.	Then,	we	designed	a	report	template	using	JasperSoft	Studio	and	fetched	data	from	a	data	source	to	populate	the	report.By	following	the	steps
outlined	in	this	tutorial,	you	should	now	have	a	good	understanding	of	how	to	create	Jasper	Reports	with	Spring	Boot	and	leverage	its	powerful	reporting	capabilities	in	your	applications.	Feel	free	to	experiment	and	enhance	the	application	further	based	on	your	specific	requirements.

