
	

https://wefomikimese.nurepikis.com/343580254491070067889183208109273849798533?jetixafebinajetotivozazifunetozexikunovixedawulepigutufodekutazevizoribenafunotajiremi=boxevagupefukulusazugonawukifivemorakawemibitugatatutitijawesezogukovexelogivedituxejurobutenopaseziwixodozigodevepojetebolarokapemiwidesegesisobusileromibasujowinaxotumuxemagotenelewikefidowojodimudejimazejib&utm_kwd=fujitsu+fi+6130+scan+button+not+working&neparilisazadogezunikegukibovuxoboxovetivewekuwenejokafepixul=mesokorowoferowuxejefemuxavaleratezedupikitaduxakemuzigelekuxoxepugujikasexogepalavofowimuminapajizabodegavilifud

Auth	is	a	user	management	and	authentication	server	written	in	Go	that	powersSupabase's	features	such	as:Issuing	JWTsRow	Level	Security	with	PostgRESTUser	managementSign	in	with	email,	password,	magic	link,	phone	numberSign	in	with	external	providers	(Google,	Apple,	Facebook,	Discord,	...)It	is	originally	based	on	the	excellentGoTrue
codebase	by	Netlify,	however	both	have	diverged	significantly	in	features	and	capabilities.If	you	wish	to	contribute	to	the	project,	please	refer	to	the	contributing	guide.	Quick	StartRunning	in	ProductionConfigurationEndpoints	Create	a	.env	file	to	store	your	own	custom	env	vars.	See	example.envStart	the	local	postgres	database	in	a	postgres
container:	docker-compose	-f	docker-compose-dev.yml	up	postgresBuild	the	auth	binary:	make	build	.	You	should	see	an	output	like	this:go	build	-ldflags	"-X	github.com/supabase/auth/cmd.Version=`git	rev-parse	HEAD`"GOOS=linux	GOARCH=arm64	go	build	-ldflags	"-X	github.com/supabase/auth/cmd.Version=`git	rev-parse	HEAD`"	-o	gotrue-
arm64Execute	the	auth	binary:	./auth	Create	a	.env.docker	file	to	store	your	own	custom	env	vars.	See	example.docker.envmake	buildmake	devdocker	ps	should	show	2	docker	containers	(auth_postgresql	and	gotrue_gotrue)That's	it!	Visit	the	health	checkendpoint	to	confirm	that	auth	is	running.	Running	an	authentication	server	in	production	is	not
an	easy	feat.	Werecommend	using	Supabase	Auth	which	gets	regularsecurity	updates.Otherwise,	please	make	sure	you	setup	a	process	to	promptly	update	to	thelatest	version.	You	can	do	that	by	following	this	repository,	specifically	theReleases	and	SecurityAdvisories	sections.	Auth	uses	the	Semantic	Versioning	scheme.	Here	are	somefurther
clarifications	on	backward	compatibility	guarantees:Go	API	compatibilityAuth	is	not	meant	to	be	used	as	a	Go	library.	There	are	no	guarantees	onbackward	API	compatibility	when	used	this	way	regardless	which	version	numberchanges.PatchChanges	to	the	patch	version	guarantees	backward	compatibility	with:Database	objects	(tables,	columns,
indexes,	functions).REST	APIJWT	structureConfigurationGuaranteed	examples:A	column	won't	change	its	type.A	table	won't	change	its	primary	key.An	index	will	not	be	removed.A	uniqueness	constraint	will	not	be	removed.A	REST	API	will	not	be	removed.Parameters	to	REST	APIs	will	work	equivalently	as	before	(or	better,	if	a	bughas	been
fixed).Configuration	will	not	change.Not	guaranteed	examples:A	table	may	add	new	columns.Columns	in	a	table	may	be	reordered.Non-unique	constraints	may	be	removed	(database	level	checks,	null,	defaultvalues).JWT	may	add	new	properties.MinorChanges	to	minor	version	guarantees	backward	compatibility	with:REST	APIJWT
structureConfigurationExceptions	to	these	guarantees	will	be	made	only	when	serious	security	issuesare	found	that	can't	be	remedied	in	any	other	way.Guaranteed	examples:Existing	APIs	may	be	deprecated	but	continue	working	for	the	next	few	minorversion	releases.Configuration	changes	may	become	deprecated	but	continue	working	for	the
nextfew	minor	version	releases.Already	issued	JWTs	will	be	accepted,	but	new	JWTs	may	be	with	a	differentstructure	(but	usually	similar).Not	guaranteed	examples:Removal	of	JWT	fields	after	a	deprecation	notice.Removal	of	certain	APIs	after	a	deprecation	notice.Removal	of	sign-in	with	external	providers,	after	a	deprecation	notice.Deletion,
truncation,	significant	schema	changes	to	tables,	indexes,	views,functions.We	aim	to	provide	a	deprecation	notice	in	execution	logs	for	at	least	two	majorversion	releases	or	two	weeks	if	multiple	releases	go	out.	Compatibility	willbe	guaranteed	while	the	notice	is	live.MajorChanges	to	the	major	version	do	not	guarantee	any	backward	compatibility
withprevious	versions.	Certain	inherited	features	from	the	Netlify	codebase	are	not	supported	bySupabase	and	they	may	be	removed	without	prior	notice	in	the	future.	This	is	acomprehensive	list	of	those	features:Multi-tenancy	via	the	instances	table	i.e.	GOTRUE_MULTI_INSTANCE_MODEconfiguration	parameter.System	user	(zero	UUID
user).Super	admin	via	the	is_super_admin	column.Group	information	in	JWTs	via	GOTRUE_JWT_ADMIN_GROUP_NAME	and	otherconfiguration	fields.Symmetrics	JWTs.	In	the	future	it	is	very	likely	that	Auth	will	beginissuing	asymmetric	JWTs	(subject	to	configuration),	so	do	not	rely	on	theassumption	that	only	HS256	signed	JWTs	will	be	issued	long
term.Note	that	this	is	not	an	exhaustive	list	and	it	may	change.	These	are	some	best	practices	to	follow	when	self-hosting	to	ensure	backwardcompatibility	with	Auth:Do	not	modify	the	schema	managed	by	Auth.	You	can	see	all	of	themigrations	in	the	migrations	directory.Do	not	rely	on	schema	and	structure	of	data	in	the	database.	Always	useAuth
APIs	and	JWTs	to	infer	information	about	users.Always	run	Auth	behind	a	TLS-capable	proxy	such	as	a	load	balancer,	CDN,nginx	or	other	similar	software.	You	may	configure	Auth	using	either	a	configuration	file	named	.env,environment	variables,	or	a	combination	of	both.	Environment	variables	are	prefixed	with	GOTRUE_,	and	will	always	have
precedence	over	values	provided	via	file.	GOTRUE_SITE_URL=	-	string	requiredThe	base	URL	your	site	is	located	at.	Currently	used	in	combination	with	other	settings	to	construct	URLs	used	in	emails.	Any	URI	that	shares	a	host	with	SITE_URL	is	a	permitted	value	for	redirect_to	params	(see	/authorize	etc.).URI_ALLOW_LIST	-	stringA	comma
separated	list	of	URIs	(e.g.	"	,https://*.foo.example.com,	")	which	are	permitted	as	valid	redirect_to	destinations.	Defaults	to	[].	Supports	wildcard	matching	through	globbing.	e.g.	https://*.foo.example.com	will	allow	and	to	be	accepted.	Globbing	is	also	supported	on	subdomains.	e.g.	will	allow	and	to	be	accepted.For	more	common	glob	patterns,	check
out	the	following	link.OPERATOR_TOKEN	-	string	Multi-instance	mode	onlyThe	shared	secret	with	an	operator	(usually	Netlify)	for	this	microservice.	Used	to	verify	requests	have	been	proxied	through	the	operator	andthe	payload	values	can	be	trusted.DISABLE_SIGNUP	-	boolWhen	signup	is	disabled	the	only	way	to	create	new	users	is	through
invites.	Defaults	to	false,	all	signups	enabled.GOTRUE_EXTERNAL_EMAIL_ENABLED	-	boolUse	this	to	disable	email	signups	(users	can	still	use	external	oauth	providers	to	sign	up	/	sign	in)GOTRUE_EXTERNAL_PHONE_ENABLED	-	boolUse	this	to	disable	phone	signups	(users	can	still	use	external	oauth	providers	to	sign	up	/	sign
in)GOTRUE_RATE_LIMIT_HEADER	-	stringHeader	on	which	to	rate	limit	the	/token	endpoint.GOTRUE_RATE_LIMIT_EMAIL_SENT	-	stringRate	limit	the	number	of	emails	sent	per	hr	on	the	following	endpoints:	/signup,	/invite,	/magiclink,	/recover,	/otp,	&	/user.GOTRUE_PASSWORD_MIN_LENGTH	-	intMinimum	password	length,	defaults	to
6.GOTRUE_PASSWORD_REQUIRED_CHARACTERS	-	a	string	of	character	sets	separated	by	:.	A	password	must	contain	at	least	one	character	of	each	set	to	be	accepted.	To	use	the	:	character	escape	it	with	\.GOTRUE_SECURITY_REFRESH_TOKEN_ROTATION_ENABLED	-	boolIf	refresh	token	rotation	is	enabled,	auth	will	automatically	detect
malicious	attempts	to	reuse	a	revoked	refresh	token.	When	a	malicious	attempt	is	detected,	gotrue	immediately	revokes	all	tokens	that	descended	from	the	offending	token.GOTRUE_SECURITY_REFRESH_TOKEN_REUSE_INTERVAL	-	stringThis	setting	is	only	applicable	if	GOTRUE_SECURITY_REFRESH_TOKEN_ROTATION_ENABLED	is	enabled.
The	reuse	interval	for	a	refresh	token	allows	for	exchanging	the	refresh	token	multiple	times	during	the	interval	to	support	concurrency	or	offline	issues.	During	the	reuse	interval,	auth	will	not	consider	using	a	revoked	token	as	a	malicious	attempt	and	will	simply	return	the	child	refresh	token.Only	the	previous	revoked	token	can	be	reused.	Using	an
old	refresh	token	way	before	the	current	valid	refresh	token	will	trigger	the	reuse	detection.	GOTRUE_API_HOST=localhostPORT=9999API_EXTERNAL_URL=	API_HOST	-	stringHostname	to	listen	on.PORT	(no	prefix)	/	API_PORT	-	numberPort	number	to	listen	on.	Defaults	to	8081.API_ENDPOINT	-	string	Multi-instance	mode	onlyControls	what
endpoint	Netlify	can	access	this	API	on.API_EXTERNAL_URL	-	string	requiredThe	URL	on	which	Gotrue	might	be	accessed	at.REQUEST_ID_HEADER	-	stringIf	you	wish	to	inherit	a	request	ID	from	the	incoming	request,	specify	the	name	in	this	value.	GOTRUE_DB_DRIVER=postgresDATABASE_URL=root@localhost/authDB_DRIVER	-	string
requiredChooses	what	dialect	of	database	you	want.	Must	be	postgres.DATABASE_URL	(no	prefix)	/	DB_DATABASE_URL	-	string	requiredConnection	string	for	the	database.GOTRUE_DB_MAX_POOL_SIZE	-	intSets	the	maximum	number	of	open	connections	to	the	database.	Defaults	to	0	which	is	equivalent	to	an	"unlimited"	number	of
connections.DB_NAMESPACE	-	stringAdds	a	prefix	to	all	table	names.Migrations	NoteMigrations	are	applied	automatically	when	you	run	./auth.	However,	you	also	have	the	option	to	rerun	the	migrations	via	the	following	methods:If	built	locally:	./auth	migrateUsing	Docker:	docker	run	--rm	auth	gotrue	migrate	LOG_LEVEL=debug	#	available	without
GOTRUE	prefix	(exception)GOTRUE_LOG_FILE=/var/log/go/auth.logLOG_LEVEL	-	stringControls	what	log	levels	are	output.	Choose	from	panic,	fatal,	error,	warn,	info,	or	debug.	Defaults	to	info.LOG_FILE	-	stringIf	you	wish	logs	to	be	written	to	a	file,	set	log_file	to	a	valid	file	path.	Auth	has	basic	observability	built	in.	It	is	able	to
exportOpenTelemetry	metrics	and	traces	to	a	collector.	To	enable	tracing	configure	these	variables:GOTRUE_TRACING_ENABLED	-	booleanGOTRUE_TRACING_EXPORTER	-	string	only	opentelemetry	supportedMake	sure	you	also	configure	the	OpenTelemetryExporterconfiguration	for	your	collector	or	service.For	example,	if	you
useHoneycomb.ioyou	should	set	these	standard	OpenTelemetry	OTLP	variables:OTEL_SERVICE_NAME=authOTEL_EXPORTER_OTLP_PROTOCOL=grpcOTEL_EXPORTER_OTLP_ENDPOINT=	OTEL_EXPORTER_OTLP_HEADERS="x-honeycomb-team=,x-honeycomb-dataset=auth"	To	enable	metrics	configure	these
variables:GOTRUE_METRICS_ENABLED	-	booleanGOTRUE_METRICS_EXPORTER	-	string	only	opentelemetry	and	prometheussupportedMake	sure	you	also	configure	the	OpenTelemetryExporterconfiguration	for	your	collector	or	service.If	you	use	the	prometheus	exporter,	the	server	host	and	port	can	beconfigured	using	these	standard
OpenTelemetry	variables:OTEL_EXPORTER_PROMETHEUS_HOST	-	IP	address,	default	0.0.0.0OTEL_EXPORTER_PROMETHEUS_PORT	-	port	number,	default	9100The	metrics	are	exported	on	the	/	path	on	the	server.If	you	use	the	opentelemetry	exporter,	the	metrics	are	pushed	to	thecollector.For	example,	if	you	useHoneycomb.ioyou	should	set
these	standard	OpenTelemetry	OTLP	variables:OTEL_SERVICE_NAME=authOTEL_EXPORTER_OTLP_PROTOCOL=grpcOTEL_EXPORTER_OTLP_ENDPOINT=	OTEL_EXPORTER_OTLP_HEADERS="x-honeycomb-team=,x-honeycomb-dataset=auth"Note	that	Honeycomb.io	requires	a	paid	plan	to	ingest	metrics.If	you	need	to	debug	an	issue	with	traces
or	metrics	not	being	pushed,	you	canset	DEBUG=true	to	get	more	insights	from	the	OpenTelemetry	SDK.	When	using	the	OpenTelemetry	tracing	or	metrics	exporter	you	can	define	customresource	attributes	using	the	standard	OTEL_RESOURCE_ATTRIBUTES	environmentvariable.A	default	attribute	auth.version	is	provided	containing	the	build
version.	All	HTTP	calls	to	the	Auth	API	are	traced.	Routes	use	the	parametrizedversion	of	the	route,	and	the	values	for	the	route	parameters	can	be	found	asthe	http.route.params.	span	attribute.For	example,	the	following	request:GET	/admin/users/4acde936-82dc-4552-b851-831fb8ce0927/will	be	traced	as:http.method	=	GEThttp.route	=
/admin/users/{user_id}http.route.params.user_id	=	4acde936-82dc-4552-b851-831fb8ce0927	All	of	the	Go	runtime	metrics	are	exposed.	Some	HTTP	metrics	are	also	collectedby	default.	GOTRUE_JWT_SECRET=supersecretvalueGOTRUE_JWT_EXP=3600GOTRUE_JWT_AUD=netlifyJWT_SECRET	-	string	requiredThe	secret	used	to	sign	JWT	tokens
with.JWT_EXP	-	numberHow	long	tokens	are	valid	for,	in	seconds.	Defaults	to	3600	(1	hour).JWT_AUD	-	stringThe	default	JWT	audience.	Use	audiences	to	group	users.JWT_ADMIN_GROUP_NAME	-	stringThe	name	of	the	admin	group	(if	enabled).	Defaults	to	admin.JWT_DEFAULT_GROUP_NAME	-	stringThe	default	group	to	assign	all	new	users	to.	We
support	apple,	azure,	bitbucket,	discord,	facebook,	figma,	github,	gitlab,	google,	keycloak,	linkedin,	notion,	spotify,	slack,	twitch,	twitter	and	workos	for	external	authentication.Use	the	names	as	the	keys	underneath	external	to	configure	each
separately.GOTRUE_EXTERNAL_GITHUB_ENABLED=trueGOTRUE_EXTERNAL_GITHUB_CLIENT_ID=myappclientidGOTRUE_EXTERNAL_GITHUB_SECRET=clientsecretvaluesssshGOTRUE_EXTERNAL_GITHUB_REDIRECT_URI=	external	providers	are	required,	but	you	must	provide	the	required	values	if	you	choose	to	enable
any.EXTERNAL_X_ENABLED	-	boolWhether	this	external	provider	is	enabled	or	notEXTERNAL_X_CLIENT_ID	-	string	requiredThe	OAuth2	Client	ID	registered	with	the	external	provider.EXTERNAL_X_SECRET	-	string	requiredThe	OAuth2	Client	Secret	provided	by	the	external	provider	when	you	registered.EXTERNAL_X_REDIRECT_URI	-	string
requiredThe	URI	a	OAuth2	provider	will	redirect	to	with	the	code	and	state	values.EXTERNAL_X_URL	-	stringThe	base	URL	used	for	constructing	the	URLs	to	request	authorization	and	access	tokens.	Used	by	gitlab	and	keycloak.	For	gitlab	it	defaults	to	.	For	keycloak	you	need	to	set	this	to	your	instance,	for	example:	To	try	out	external
authentication	with	Apple	locally,	you	will	need	to	do	the	following:Remap	localhost	to	in	your	/etc/hosts	config.Configure	auth	to	serve	HTTPS	traffic	over	localhost	by	replacing	ListenAndServe	in	api.go	with:	func	(a	*API)	ListenAndServe(hostAndPort	string)	{	log	:=	logrus.WithField("component",	"api")	path,	err	:=	os.Getwd()	if	err	!=	nil	{
log.Println(err)	}	server	:=	&http.Server{	Addr:	hostAndPort,	Handler:	a.handler,	}	done	:=	make(chan	struct{})	defer	close(done)	go	func()	{	waitForTermination(log,	done)	ctx,	cancel	:=	context.WithTimeout(context.Background(),	time.Minute)	defer	cancel()	server.Shutdown(ctx)	}()	if	err	:=	server.ListenAndServeTLS("PATH_TO_CRT_FILE",
"PATH_TO_KEY_FILE");	err	!=	http.ErrServerClosed	{	log.WithError(err).Fatal("http	server	listen	failed")	}	}Generate	the	crt	and	key	file.	See	here	for	more	information.Generate	the	GOTRUE_EXTERNAL_APPLE_SECRET	by	following	this	post!	Sending	email	is	not	required,	but	highly	recommended	for	password	recovery.If	enabled,	you	must
provide	the	required	values	below.GOTRUE_SMTP_HOST=smtp.mandrillapp.comGOTRUE_SMTP_PORT=587GOTRUE_SMTP_USER=smtp-delivery@example.comGOTRUE_SMTP_PASS=correcthorsebatterystapleGOTRUE_SMTP_ADMIN_EMAIL=support@example.comGOTRUE_MAILER_SUBJECTS_CONFIRMATION="Please
confirm"SMTP_ADMIN_EMAIL	-	string	requiredThe	From	email	address	for	all	emails	sent.SMTP_HOST	-	string	requiredThe	mail	server	hostname	to	send	emails	through.SMTP_PORT	-	number	requiredThe	port	number	to	connect	to	the	mail	server	on.SMTP_USER	-	stringIf	the	mail	server	requires	authentication,	the	username	to	use.SMTP_PASS	-
stringIf	the	mail	server	requires	authentication,	the	password	to	use.SMTP_MAX_FREQUENCY	-	numberControls	the	minimum	amount	of	time	that	must	pass	before	sending	another	signup	confirmation	or	password	reset	email.	The	value	is	the	number	of	seconds.	Defaults	to	900	(15	minutes).SMTP_SENDER_NAME	-	stringSets	the	name	of	the
sender.	Defaults	to	the	SMTP_ADMIN_EMAIL	if	not	used.MAILER_AUTOCONFIRM	-	boolIf	you	do	not	require	email	confirmation,	you	may	set	this	to	true.	Defaults	to	false.MAILER_OTP_EXP	-	numberControls	the	duration	an	email	link	or	otp	is	valid	for.MAILER_URLPATHS_INVITE	-	stringURL	path	to	use	in	the	user	invite	email.	Defaults	to
/verify.MAILER_URLPATHS_CONFIRMATION	-	stringURL	path	to	use	in	the	signup	confirmation	email.	Defaults	to	/verify.MAILER_URLPATHS_RECOVERY	-	stringURL	path	to	use	in	the	password	reset	email.	Defaults	to	/verify.MAILER_URLPATHS_EMAIL_CHANGE	-	stringURL	path	to	use	in	the	email	change	confirmation	email.	Defaults	to
/verify.MAILER_SUBJECTS_INVITE	-	stringEmail	subject	to	use	for	user	invite.	Defaults	to	You	have	been	invited.MAILER_SUBJECTS_CONFIRMATION	-	stringEmail	subject	to	use	for	signup	confirmation.	Defaults	to	Confirm	Your	Signup.MAILER_SUBJECTS_RECOVERY	-	stringEmail	subject	to	use	for	password	reset.	Defaults	to	Reset	Your
Password.MAILER_SUBJECTS_MAGIC_LINK	-	stringEmail	subject	to	use	for	magic	link	email.	Defaults	to	Your	Magic	Link.MAILER_SUBJECTS_EMAIL_CHANGE	-	stringEmail	subject	to	use	for	email	change	confirmation.	Defaults	to	Confirm	Email	Change.MAILER_TEMPLATES_INVITE	-	stringURL	path	to	an	email	template	to	use	when	inviting	a
user.	(e.g.	SiteURL,	Email,	and	ConfirmationURL	variables	are	available.Default	Content	(if	template	is	unavailable):You	have	been	invited	You	have	been	invited	to	create	a	user	on	{{	.SiteURL	}}.	Follow	this	link	to	accept	the	invite:Accept	the	inviteMAILER_TEMPLATES_CONFIRMATION	-	stringURL	path	to	an	email	template	to	use	when
confirming	a	signup.	(e.g.	SiteURL,	Email,	and	ConfirmationURL	variables	are	available.Default	Content	(if	template	is	unavailable):Confirm	your	signup	Follow	this	link	to	confirm	your	user:Confirm	your	mailMAILER_TEMPLATES_RECOVERY	-	stringURL	path	to	an	email	template	to	use	when	resetting	a	password.	(e.g.	SiteURL,	Email,	and
ConfirmationURL	variables	are	available.Default	Content	(if	template	is	unavailable):Reset	Password	Follow	this	link	to	reset	the	password	for	your	user:Reset	PasswordMAILER_TEMPLATES_MAGIC_LINK	-	stringURL	path	to	an	email	template	to	use	when	sending	magic	link.	(e.g.	SiteURL,	Email,	and	ConfirmationURL	variables	are	available.Default
Content	(if	template	is	unavailable):Magic	Link	Follow	this	link	to	login:Log	InMAILER_TEMPLATES_EMAIL_CHANGE	-	stringURL	path	to	an	email	template	to	use	when	confirming	the	change	of	an	email	address.	(e.g.	SiteURL,	Email,	NewEmail,	and	ConfirmationURL	variables	are	available.Default	Content	(if	template	is	unavailable):Confirm
Change	of	Email	Follow	this	link	to	confirm	the	update	of	your	email	from	{{	.Email	}}	to	{{	.NewEmail	}}:Change	Email	SMS_AUTOCONFIRM	-	boolIf	you	do	not	require	phone	confirmation,	you	may	set	this	to	true.	Defaults	to	false.SMS_MAX_FREQUENCY	-	numberControls	the	minimum	amount	of	time	that	must	pass	before	sending	another	sms
otp.	The	value	is	the	number	of	seconds.	Defaults	to	60	(1	minute)).SMS_OTP_EXP	-	numberControls	the	duration	an	sms	otp	is	valid	for.SMS_OTP_LENGTH	-	numberControls	the	number	of	digits	of	the	sms	otp	sent.SMS_PROVIDER	-	stringAvailable	options	are:	twilio,	messagebird,	textlocal,	and	vonageThen	you	can	use	your	twilio
credentials:SMS_TWILIO_ACCOUNT_SIDSMS_TWILIO_AUTH_TOKENSMS_TWILIO_MESSAGE_SERVICE_SID	-	can	be	set	to	your	twilio	sender	mobile	numberOr	Messagebird	credentials,	which	can	be	obtained	in	the	Dashboard:SMS_MESSAGEBIRD_ACCESS_KEY	-	your	Messagebird	access	keySMS_MESSAGEBIRD_ORIGINATOR	-	SMS	sender
(your	Messagebird	phone	number	with	+	or	company	name)If	enabled,	CAPTCHA	will	check	the	request	body	for	the	captcha_token	field	and	make	a	verification	request	to	the	CAPTCHA	provider.SECURITY_CAPTCHA_ENABLED	-	stringWhether	captcha	middleware	is	enabledSECURITY_CAPTCHA_PROVIDER	-	stringfor	now	the	only	options
supported	are:	hcaptcha	and	turnstileSECURITY_CAPTCHA_SECRET	-	stringSECURITY_CAPTCHA_TIMEOUT	-	stringRetrieve	from	hcaptcha	or	turnstile	account	SECURITY_UPDATE_PASSWORD_REQUIRE_REAUTHENTICATION	-	boolEnforce	reauthentication	on	password	update.	GOTRUE_EXTERNAL_ANONYMOUS_USERS_ENABLED	-	boolUse
this	to	enable/disable	anonymous	sign-ins.	Auth	exposes	the	following	endpoints:	Returns	the	publicly	available	settings	for	this	auth	instance.{	"external":	{	"apple":	true,	"azure":	true,	"bitbucket":	true,	"discord":	true,	"facebook":	true,	"figma":	true,	"github":	true,	"gitlab":	true,	"google":	true,	"keycloak":	true,	"linkedin":	true,	"notion":	true,	"slack":
true,	"spotify":	true,	"twitch":	true,	"twitter":	true,	"workos":	true	},	"disable_signup":	false,	"autoconfirm":	false}	Creates	(POST)	or	Updates	(PUT)	the	user	based	on	the	user_id	specified.	The	ban_duration	field	accepts	the	following	time	units:	"ns",	"us",	"ms",	"s",	"m",	"h".	See	time.ParseDuration	for	more	details	on	the	format	used.headers:{
"Authorization":	"Bearer	eyJhbGciOiJI...M3A90LCkxxtX9oNP9KZO"	//	requires	a	role	claim	that	can	be	set	in	the	GOTRUE_JWT_ADMIN_ROLES	env	var}	body:{	"role":	"test-user",	"email":	"email@example.com",	"phone":	"12345678",	"password":	"secret",	//	only	if	type	=	signup	"email_confirm":	true,	"phone_confirm":	true,	"user_metadata":	{},
"app_metadata":	{},	"ban_duration":	"24h"	or	"none"	//	to	unban	a	user}	Returns	the	corresponding	email	action	link	based	on	the	type	specified.	Among	other	things,	the	response	also	contains	the	query	params	of	the	action	link	as	separate	JSON	fields	for	convenience	(along	with	the	email	OTP	from	which	the	corresponding	token	is
generated).headers:{	"Authorization":	"Bearer	eyJhbGciOiJI...M3A90LCkxxtX9oNP9KZO"	//	admin	role	required}	body:{	"type":	"signup"	or	"magiclink"	or	"recovery"	or	"invite",	"email":	"email@example.com",	"password":	"secret",	//	only	if	type	=	signup	"data":	{	...	},	//	only	if	type	=	signup	"redirect_to":	"	"	//	Redirect	URL	to	send	the	user	to	after
an	email	action.	Defaults	to	SITE_URL.	}Returns{	"action_link":	"	"email_otp":	"EMAIL_OTP",	"hashed_token":	"TOKEN",	"verification_type":	"TYPE",	"redirect_to":	"REDIRECT_URL",	...}	Register	a	new	user	with	an	email	and	password.{	"email":	"email@example.com",	"password":	"secret"}returns:{	"id":	"11111111-2222-3333-4444-
5555555555555",	"email":	"email@example.com",	"confirmation_sent_at":	"2016-05-15T20:49:40.882805774-07:00",	"created_at":	"2016-05-15T19:53:12.368652374-07:00",	"updated_at":	"2016-05-15T19:53:12.368652374-07:00"}	//	if	sign	up	is	a	duplicate	then	faux	data	will	be	returned//	as	to	not	leak	information	about	whether	a	given	email//	has
an	account	with	your	service	or	notRegister	a	new	user	with	a	phone	number	and	password.{	"phone":	"12345678",	//	follows	the	E.164	format	"password":	"secret"}Returns:{	"id":	"11111111-2222-3333-4444-5555555555555",	//	if	duplicate	sign	up,	this	ID	will	be	faux	"phone":	"12345678",	"confirmation_sent_at":	"2016-05-15T20:49:40.882805774-
07:00",	"created_at":	"2016-05-15T19:53:12.368652374-07:00",	"updated_at":	"2016-05-15T19:53:12.368652374-07:00"}if	AUTOCONFIRM	is	enabled	and	the	sign	up	is	a	duplicate,	then	the	endpoint	will	return:{	"code":400,	"msg":"User	already	registered"}	Allows	a	user	to	resend	an	existing	signup,	sms,	email_change	or	phone_change	OTP.{
"email":	"user@example.com",	"type":	"signup"}{	"phone":	"12345678",	"type":	"sms"}returns:{	"message_id":	"msgid123456"}	Invites	a	new	user	with	an	email.This	endpoint	requires	the	service_role	or	supabase_admin	JWT	set	as	an	Auth	Bearer	header:e.g.headers:	{	"Authorization"	:	"Bearer	eyJhbGciOiJI...M3A90LCkxxtX9oNP9KZO"}{	"email":
"email@example.com"}Returns:{	"id":	"11111111-2222-3333-4444-5555555555555",	"email":	"email@example.com",	"confirmation_sent_at":	"2016-05-15T20:49:40.882805774-07:00",	"created_at":	"2016-05-15T19:53:12.368652374-07:00",	"updated_at":	"2016-05-15T19:53:12.368652374-07:00",	"invited_at":	"2016-05-15T19:53:12.368652374-
07:00"}	Verify	a	registration	or	a	password	recovery.	Type	can	be	signup	or	recovery	or	inviteand	the	token	is	a	token	returned	from	either	/signup	or	/recover.{	"type":	"signup",	"token":	"confirmation-code-delivered-in-email"}password	is	required	for	signup	verification	if	no	existing	password	exists.Returns:{	"access_token":	"jwt-token-representing-
the-user",	"token_type":	"bearer",	"expires_in":	3600,	"refresh_token":	"a-refresh-token",	"type":	"signup	|	recovery	|	invite"}Verify	a	phone	signup	or	sms	otp.	Type	should	be	set	to	sms.{	"type":	"sms",	"token":	"confirmation-otp-delivered-in-sms",	"redirect_to":	"	",	"phone":	"phone-number-sms-otp-was-delivered-to"}Returns:{	"access_token":	"jwt-
token-representing-the-user",	"token_type":	"bearer",	"expires_in":	3600,	"refresh_token":	"a-refresh-token"}	Verify	a	registration	or	a	password	recovery.	Type	can	be	signup	or	recovery	or	magiclink	or	inviteand	the	token	is	a	token	returned	from	either	/signup	or	/recover	or	/magiclink.query	params:{	"type":	"signup",	"token":	"confirmation-code-
delivered-in-email",	"redirect_to":	"	"}User	will	be	logged	in	and	redirected	to:SITE_URL/#access_token=jwt-token-representing-the-user&token_type=bearer&expires_in=3600&refresh_token=a-refresh-token&type=inviteYour	app	should	detect	the	query	params	in	the	fragment	and	use	them	to	set	the	session	(supabase-js	does	this
automatically)You	can	use	the	type	param	to	redirect	the	user	to	a	password	set	form	in	the	case	of	invite	or	recovery,or	show	an	account	confirmed/welcome	message	in	the	case	of	signup,	or	direct	them	to	some	additional	onboarding	flow	One-Time-Password.	Will	deliver	a	magiclink	or	sms	otp	to	the	user	depending	on	whether	the	request	body
contains	an	"email"	or	"phone"	key.If	"create_user":	true,	user	will	not	be	automatically	signed	up	if	the	user	doesn't	exist.{	"phone":	"12345678"	//	follows	the	E.164	format	"create_user":	true}OR//	exactly	the	same	as	/magiclink{	"email":	"email@example.com"	"create_user":	true}Returns:	Magic	Link.	Will	deliver	a	link	(e.g.	/verify?
type=magiclink&token=fgtyuf68ddqdaDd)	to	the	user	based	onemail	address	which	they	can	use	to	redeem	an	access_token.By	default	Magic	Links	can	only	be	sent	once	every	60	seconds{	"email":	"email@example.com"}Returns:	when	clicked	the	magic	link	will	redirect	the	user	to
#access_token=x&refresh_token=y&expires_in=z&token_type=bearer&type=magiclink	(see	/verify	above)	Password	recovery.	Will	deliver	a	password	recovery	mail	to	the	user	based	onemail	address.By	default	recovery	links	can	only	be	sent	once	every	60	seconds{	"email":	"email@example.com"}Returns:	This	is	an	OAuth2	endpoint	that	currently
implementsthe	password	and	refresh_token	grant	typesquery	params:	body://	Email	login{	"email":	"name@domain.com",	"password":	"somepassword"}	//	Phone	login{	"phone":	"12345678",	"password":	"somepassword"}orquery	params:	body:{	"refresh_token":	"a-refresh-token"}Once	you	have	an	access	token,	you	can	access	the	methods	requiring
authenticationby	settings	the	Authorization:	Bearer	YOUR_ACCESS_TOKEN_HERE	header.Returns:{	"access_token":	"jwt-token-representing-the-user",	"token_type":	"bearer",	"expires_in":	3600,	"refresh_token":	"a-refresh-token"}	Get	the	JSON	object	for	the	logged	in	user	(requires	authentication)Returns:{	"id":	"11111111-2222-3333-4444-
5555555555555",	"email":	"email@example.com",	"confirmation_sent_at":	"2016-05-15T20:49:40.882805774-07:00",	"created_at":	"2016-05-15T19:53:12.368652374-07:00",	"updated_at":	"2016-05-15T19:53:12.368652374-07:00"}	Update	a	user	(Requires	authentication).	Apart	from	changing	email/password,	thismethod	can	be	used	to	set	custom
user	data.	Changing	the	email	will	result	in	a	magiclink	being	sent	out.{	"email":	"new-email@example.com",	"password":	"new-password",	"phone":	"+123456789",	"data":	{	"key":	"value",	"number":	10,	"admin":	false	}}Returns:{	"id":	"11111111-2222-3333-4444-5555555555555",	"email":	"email@example.com",	"email_change_sent_at":	"2016-05-
15T20:49:40.882805774-07:00",	"phone":	"+123456789",	"phone_change_sent_at":	"2016-05-15T20:49:40.882805774-07:00",	"created_at":	"2016-05-15T19:53:12.368652374-07:00",	"updated_at":	"2016-05-15T19:53:12.368652374-07:00"}If	GOTRUE_SECURITY_UPDATE_PASSWORD_REQUIRE_REAUTHENTICATION	is	enabled,	the	user	will	need	to
reauthenticate	first.{	"password":	"new-password",	"nonce":	"123456"}	Sends	a	nonce	to	the	user's	email	(preferred)	or	phone.	This	endpoint	requires	the	user	to	be	logged	in	/	authenticated	first.	The	user	needs	to	have	either	an	email	or	phone	number	for	the	nonce	to	be	sent	successfully.headers:	{	"Authorization"	:	"Bearer
eyJhbGciOiJI...M3A90LCkxxtX9oNP9KZO"}	Logout	a	user	(Requires	authentication).This	will	revoke	all	refresh	tokens	for	the	user.	Remember	that	the	JWT	tokenswill	still	be	valid	for	stateless	auth	until	they	expires.	Get	access_token	from	external	oauth	providerquery	params:provider=apple	|	azure	|	bitbucket	|	discord	|	facebook	|	figma	|	github	|
gitlab	|	google	|	keycloak	|	linkedin	|	notion	|	slack	|	spotify	|	twitch	|	twitter	|	workosscopes=Redirects	to	provider	and	then	to	/callbackFor	apple	specific	setup	see:	External	provider	should	redirect	to	hereRedirects	to	#access_token=&refresh_token=&provider_token=&expires_in=3600&provider=If	additional	scopes	were	requested	then
provider_token	will	be	populated,	you	can	use	this	to	fetch	additional	data	from	the	provider	or	interact	with	their	services	1.	Overview	Supabase	is	a	backend	as	a	service(BaaS)	platform,	which	is	an	open	source	alternative	to	firebase,	but	it	has	better	services	interms	of	cost	and	setup.	there	are	many	services	including,	but	not	limited	to,
authentication,	postgres	database,	storage	and	more.	For	this	guide,	i	will	guide	you	step	by	step	from	creating	and	configuring	a	fully	automated	auth	+	db,	including	syncing	user	data,	i	am	using	nextjs	but	you	can	use	any	frameworks	of	your	choice.	2.	Prerequisite	nextjs	14	or	15	(app	router)	3.	Supabase	setup	Step	1:	Go	to	supabase	and	signup,
then	create	a	new	project	by	selecting	your	organization.	Step	2	:	Once	you	created,	go	to	APIs	page	and	copy	your	url	and	anon	key	and	store	them	in	.env.local,	name	them	like	this:	NEXT_PUBLIC_SUPABASE_URL,	NEXT_PUBLIC_SUPABASE_ANON_KEY.	Step	3:	Now,	i	am	going	to	use	Google	as	a	provider	so	you	need	to	create	a	project	in	Google
cloud	platform	and	get	your	Oauth	credentials(client_id	and	client_secret).	Follow	this	guide	on	how	to	obtain	them.	Step	4	:	Great,	you	came	all	this	way,	go	to	Authentication	=>	Providers	=>	Google,	insert	your	client_id	and	client_secret	and	copy	callback	url,	go	back	to	Google	cloud	and	peste	it	in	Authorized	redirect	URLs	section	in	Credentials
page	of	your	project.	Now	enable	the	provider	and	save	it.	weve	finished	the	basic	setup	for	auth	now.	Step	5	:	Go	to	database	section,	click	connect	button	on	top,	get	your	connection	string	so	that	you	can	push	the	table	schema	from	your	local	repo.	after	pushing	your	schema,	it	will	create	a	table	for	you.	So	what	we	want	is	when	a	new	user	signs
up	using	google,	he	will	be	added	to	the	auth	and	synced	to	the	database	automatically.	there	are	no	webhooks	to	do	this,	but	you	can	use	triggers	and	functions	to	call	the	db	and	insert	user	data.	Go	to	Sql	editor	section	and	create	a	function,	this	will	be	called	by	the	trigger	when	a	user	signs	up,	which	in	turn	inserts	user	data	to	the	table.	make	sure
to	change	fields	as	your	need:create	or	replace	function	public.sync_user()	returns	trigger	as	$$begin	insert	into	public."User"	("supabaseUserId",	email,	"fullName",	"avatarUrl")	values	(new.id,	--	maps	to	supabaseUserId	new.email,	coalesce(new.raw_user_meta_data->>'full_name',	null),	coalesce(new.raw_user_meta_data->>'avatar_url',	null))	on
conflict	("supabaseUserId")	do	nothing;	return	new;end;$$	language	plpgsql	security	definer;	Now,	create	a	trigger,	which	will	be	called	on	a	new	user	sign	ups:create	trigger	on_auth_user_createdafter	insert	on	auth.usersfor	each	rowexecute	function	public.sync_user();	execute	both	of	queries	and	now	you	have	a	fully	automated	user	data	sync	with
supabase	.	4.	Implementation	in	Next.js	Step	1	:	create	a	new	nextjs	app	using:	npx	create-next-app@latest	Step	2	:	once	installed,	open	it	up	in	your	favorite	editor	and	install	supabase	package	using:	npm	install	@supabase/supabase-js	Step	3	:	create	a	file	named	supabase.ts,	and	peste	the	following	code:import	{	createClient	}	from
"@supabase/supabase-js";const	supabaseUrl	=	process.env.NEXT_PUBLIC_SUPABASE_URL!;const	supabaseKey	=	process.env.NEXT_PUBLIC_SUPABASE_ANON_KEY!;export	const	supabase	=	createClient(supabaseUrl,	supabaseKey);	Step	4	:	create	a	global	store	for	managing	auth	state,	in	my	case	i	am	using	zustand	but	you	can	use	your	own
state	manager	and	implement	like	mine:import	{	create	}	from	"zustand";import	{	supabase	}	from	"@/lib/supabase";type	AuthState	=	{	user:	any	|	null;	isLoading:	boolean;	setUser:	(user:	any	|	null)	=>	void;	setLoading:	(loading:	boolean)	=>	void;	signOut:	()	=>	Promise;};export	const	useAuthStore	=	create((set)	=>	({	user:	null,	isLoading:	true,
setUser:	(user)	=>	set({	user	}),	setLoading:	(loading)	=>	set({	isLoading:	loading	}),	signOut:	async	()	=>	{	await	supabase.auth.signOut();	set({	user:	null	});	},}));	Step	5	:	create	a	sign	in	page,	app/(auth)/signin:"use	client"import	{	Button	}	from	"@/components/ui/button";import	{	supabase	}	from	"@/lib/supabase"export	default	function
GoogleSignIn()	{	const	handleSignIn	=	async	()	=>	{	const	{	data,	error	}	=	await	supabase.auth.signInWithOAuth({	provider:	'google',	options:	{	redirectTo:	`${window.location.origin}`	}	})	console.log("Supadata",	data);	if	(error)	console.error(error)	}	return	(Sign	in	with	Google)}	Step	6	:	create	a	sign	out	page:	app/(auth)/signout:"use
client"import	{	useAuthStore	}	from	"@/store/authStore";import	{	useRouter	}	from	"next/navigation";export	default	function	SignOutButton()	{	const	{	signOut	}	=	useAuthStore();	const	router	=	useRouter();	const	handleSignOut	=	async	()	=>	{	await	signOut();	router.push("/signin");	};	return	Sign	Out;}	Step	7	:	create	AuthProvider.ts	file	to
manage	auth	state	globally:"use	client";import	{	useEffect	}	from	"react";import	{	supabase	}	from	"@/lib/supabase";import	{	useAuthStore	}	from	"@/store/authStore";export	default	function	AuthProvider({	children	}:	{	children:	React.ReactNode	})	{	const	setUser	=	useAuthStore((state)	=>	state.setUser);	const	setLoading	=	useAuthStore((state)
=>	state.setLoading);	useEffect(()	=>	{	const	initializeAuth	=	async	()	=>	{	setLoading(true);	const	{	data:	{	session	},	error	}	=	await	supabase.auth.getSession();	if	(error)	{	console.error("Error	fetching	session:",	error);	setUser(null);	}	else	if	(session)	{	setUser(session.user);	}	else	{	setUser(null);	}	setLoading(false);	};	initializeAuth();	//	Listen
for	authentication	changes	const	{	data:	authListener	}	=	supabase.auth.onAuthStateChange((_,	session)	=>	{	setUser(session?.user	||	null);	});	return	()	=>	{	authListener.subscription.unsubscribe();	};	},	[setUser,	setLoading]);	return	{children};}	Step	8	:	create	Authenticated.ts	file	which	controls	access	to	pages:"use	client";import	{	useEffect	}
from	"react";import	{	useRouter	}	from	"next/navigation";import	{	useAuthStore	}	from	"@/store/authStore";export	default	function	Authenticated({	children	}:	{	children:	React.ReactNode	})	{	const	user	=	useAuthStore((state)	=>	state.user);	const	isLoading	=	useAuthStore((state)	=>	state.isLoading);	const	router	=	useRouter();	useEffect(()	=>	{
if	(!isLoading	&&	!user)	{	router.replace("/signin");	}	},	[user,	isLoading,	router]);	return	{children};}	Step	9	:	Now	wrap	root	layout.ts	using	AuthProvider	and	Authenticated	(optional,	you	can	use	on	specific	pages):import	"./globals.css";import	AuthProvider	from	"@/components/AuthProvider";import	Authenticated	from
"@/components/Authenticated";export	default	function	RootLayout({	children,}:	Readonly)	{	return	({children});}	5.	Conclusion	In	this	article,	you	learned	how	to:	Set	up	Supabase	authentication	in	a	Next.js	app.	Use	Google	as	an	authentication	provider.	Automatically	sync	user	data	to	the	PostgreSQL	database.With	the	default	options,	the	module
requires	a	log-in	page	and	a	confirm	page	to	handle	the	PKCE	authorization	code	flow.	If	you	want	to	understand	how	it	works	under	the	hood,	you	can	read	this	section.All	you	need	to	do	is	to	create	a	login.vue	and	confirm.vue	page	in	the	pages	folder.For	advanced	users	who	want	to	implement	the	auth	behaviour	themselves,	you	can	disable	or
override	the	redirect	options.Log-in	page	-	/loginEach	time	a	user	is	trying	to	access	a	page	that	needs	authentication,	he	will	automatically	be	redirected	to	the	configured	log	in	page.	If	you	want	to	allow	access	to	"public"	page,	you	just	need	to	add	them	in	the	exclude	redirect	option.	Alternatively,	you	can	enable	the	redirect	only	for	certain	routes
using	the	include	redirect	option.div]:my-2.5	[&_ul]:my-2.5	[&_ol]:my-2.5	[&>*]:last:!mb-0	[&_ul]:ps-4.5	[&_ol]:ps-4.5	[&_li]:my-0	transition-colors	border	border-warning/25	bg-warning/10	text-warning-600	dark:text-warning-300	[&_a]:text-warning	[&_a]:hover:border-warning	[&_code]:text-warning-600	dark:[&_code]:text-warning-300
[&_code]:border-warning/25	[&_a]:hover:[&>code]:border-warning	[&_a]:hover:[&>code]:text-warning	[&>ul]:marker:text-warning/50>Ensure	to	activate	the	authentication	providers	you	want	in	the	Supabase	Dashboard	under	Authentication	->	Providers.The	log-in	page	initiates	the	log-in	method(s)	you	choose	from	the	available	authorization
methods	provided	by	Supabase,	it	could	looks	like:pages/login.vueconst	supabase	=	useSupabaseClient()const	email	=	ref('')const	signInWithOtp	=	async	()	=>	{	const	{	error	}	=	await	supabase.auth.signInWithOtp({	email:	email.value,	options:	{	emailRedirectTo:	'	,	}	})	if	(error)	console.log(error)}	Sign	In	with	E-Mail	Once	the	authorization	flow	is
triggered	using	the	auth	wrapper	of	the	useSupabaseClient	composable,	the	session	management	is	handled	automatically	and	the	user	will	be	redirected	to	the	page	you	specify	in	the	redirect	option	(/confirm	by	default).Confirm	page	-	/confirmThe	confirmation	page	receives	the	supabase	callback	which	contains	session	information.	The	supabase
client	automatically	detects	and	handles	this,	and	once	the	session	is	confirmed	the	user	value	will	automatically	be	updated.	From	there	you	can	redirect	to	the	appropriate	page.div]:my-2.5	[&_ul]:my-2.5	[&_ol]:my-2.5	[&>*]:last:!mb-0	[&_ul]:ps-4.5	[&_ol]:ps-4.5	[&_li]:my-0	transition-colors	border	border-success/25	bg-success/10	text-success-600
dark:text-success-300	[&_a]:text-success	[&_a]:hover:border-success	[&_code]:text-success-600	dark:[&_code]:text-success-300	[&_code]:border-success/25	[&_a]:hover:[&>code]:border-success	[&_a]:hover:[&>code]:text-success	[&>ul]:marker:text-success/50>The	redirect	URL	must	be	configured	in	your	Supabase	dashboard	under	Authentication	-
>	URL	Configuration	->	Redirect	URLs.pages/confirm.vueconst	user	=	useSupabaseUser()watch(user,	()	=>	{	if	(user.value)	{	//	Redirect	to	protected	page	return	navigateTo('/')	}},	{	immediate:	true	})	Waiting	for	login...You	can	easily	handle	redirection	to	the	initial	requested	route	after	login	using	the	useSupabaseCookieRedirect	composable	and
the	saveRedirectToCookie	option.By	setting	the	saveRedirectToCookie	option	to	true,	the	module	will	automatically	save	the	current	path	to	a	cookie	when	the	user	is	redirected	to	the	login	page.	When	the	user	logs	in,	you	can	then	retrieve	the	saved	path	from	the	cookie	and	redirect	the	user	to	it	on	the	/confirm	page:pages/confirm.vueconst	user	=
useSupabaseUser()const	redirectInfo	=	useSupabaseCookieRedirect()watch(user,	()	=>	{	if	(user.value)	{	//	Get	redirect	path,	and	clear	it	from	the	cookie	const	path	=	redirectInfo.pluck()	//	Redirect	to	the	saved	path,	or	fallback	to	home	return	navigateTo(path	||	'/')	}},	{	immediate:	true	})	Waiting	for	login...If	you	want	to	manually	set	the	redirect
path,	you	can	do	so	by	disabling	saveRedirectToCookie,	and	then	set	the	value	using	the	useSupabaseCookieRedirect	composable	directly.Reset	PasswordYou	can	easily	handle	password	reset	request	for	the	user.	The	flow	consist	of	2	steps:pages/password/reset.vueconst	supabase	=	useSupabaseClient()const	email	=	ref('')const
requestResetPassword	=	async	()	=>	{	const	{	data,	error	}	=	await	supabase.auth.resetPasswordForEmail(email.value,	{	redirectTo:	'	,	})	if	(error)	console.log(error)}	Reset	Password	div]:my-2.5	[&_ul]:my-2.5	[&_ol]:my-2.5	[&>*]:last:!mb-0	[&_ul]:ps-4.5	[&_ol]:ps-4.5	[&_li]:my-0	transition-colors	border	border-success/25	bg-success/10	text-success-
600	dark:text-success-300	[&_a]:text-success	[&_a]:hover:border-success	[&_code]:text-success-600	dark:[&_code]:text-success-300	[&_code]:border-success/25	[&_a]:hover:[&>code]:border-success	[&_a]:hover:[&>code]:text-success	[&>ul]:marker:text-success/50>You	can	configure	the	URL	that	the	user	is	redirected	to	with	the	redirectTo
parameter.pages/password/update.vueconst	supabase	=	useSupabaseClient()const	newPassword	=	ref('')const	updateUserPassword	=	async	()	=>	{	const	{	data,	error	}	=	await	supabase.auth.updateUser({	password:	newPassword.value	})	if	(error)	console.log(error)}	Update	Password	You	can	also	watch	for	the	event	PASSWORD_RECOVERY	that
will	be	emitted	when	the	password	recovery	link	is	clicked.	You	can	use	onAuthStateChange()	to	listen	and	invoke	a	callback	function	on	these	events.pages/password/update.vueconst	supabase	=	useSupabaseClient()const	password	=	generateRandomPassword()watch(newPassword,	()	=>	{	supabase.auth.onAuthStateChange(async	(event,	session)
=>	{	if	(event	==	"PASSWORD_RECOVERY")	{	const	{	data,	error	}	=	await	supabase.auth	.updateUser({	password	})	if	(data)	alert("Password	updated	successfully!")	if	(error)	alert("There	was	an	error	updating	your	password.")	}	})If	you	want	to	learn	more	about	it,	you	can	read	this	section.	Today	I'll	teach	you	how	to	use	Supabase	to	add	a
complete,	simple,	and	secure	authentication	service	to	your	project.	If	you	are	unfamiliar	with	Supabase,	it	is	a	Backend-as-a-Service	(BaaS)	that	provides	essential	features	such	as	a	RESTful	API	connected	to	a	Postgress	database,	serverless	functions,	and,	most	importantly,	authentication,	the	topic	of	this	blogpost.If	you're	interested	to	learn	more
about	the	RESTful	API,	check	out	my	previous	blogpost	where	I	walk	you	through	the	process	of	creating	a	comprehensive	CRUD	application	with	Supabase.Table	of	contentsIntroductionSupabase	setupFront-end	setupConclusionIntroductionThe	authentication	process	might	be	tough	to	grasp	and	even	more	difficult	to	include	into	your	solution.	This
approach	is	now	a	piece	of	cake	thanks	to	Supabase,	which	I	talked	about	in	a	previous	blogpost.The	authentication	solution	provided	by	Supabase	is	a	mix	of	JWT	(JSON	Web	Token)	and	API	key.	Essentially,	as	long	as	a	user	makes	API	requests	without	a	JWT,	he	will	be	deemed	an	anonymous	user	and	will	have	restricted	access	to	the	API,	in	our
case	only	the	login	and	register	API.If,	on	the	other	hand,	the	user	uses	a	JWT	to	make	API	calls,	he	will	be	authorized	to	make	any	API	calls	within	the	scope	of	the	role	he	has	been	assigned.Today,	I'll	be	adding	their	authentication	service	to	the	previous	blogpost's	dashboard	app	built	with	Remix.	In	a	nutshell,	this	is	a	dashboard	that	allows	you	to
manage	a	list	of	video	games.	The	client	makes	API	calls	to	a	database	housed	on	Supabase.If	you	are	unfamiliar	with	Supabase,	I	strongly	advise	you	to	read	my	my	previous	blogpost	first	because	I	will	be	working	on	a	previously	constructed	Supabase	project!The	goals:1/	Add	a	login	and	a	register	page.2/	Prevent	unauthorized	users	from	accessing
the	dashboard.3/	Only	allow	authorized	users	to	access	the	dashboard	by	sending	requests	with	a	JWT.Supabase	setupBefore	we	dive	into	the	code,	we	need	to	make	some	changes	to	the	Supabase	dashboard.	First,	we	need	to	enable	authentication	and	then	apply	policies	to	the	database	so	that	only	authenticated	users	can	interact	with	the
dashboard.So	first	make	sure	to	have	enabled	email	authentication,	to	keep	it	simple	I	won't	handle	email	confirmation.	Navigate	to	Authentication	>	Providers	via	the	left	menu	bar.To	begin,	ensure	that	email	authentication	is	enabled;	to	keep	things	simple,	I	will	not	handle	email	confirmation.	Using	the	left	menu	bar,	navigate	to	Authentication	>
Providers.There	are	numerous	providers	available;	in	this	example,	we	will	use	email	authentication.	The	user	must	authenticate	using	the	standard	email/password	combination.Supabase	authentication	settingsNext,	we	will	add	a	policy	to	our	database	in	order	to	restrict	access	to	our	database	API.	The	following	policy	is	straightforward;	it	grants
read/write	access	to	all	authenticated	users;	however,	keep	in	mind	that	you	can	go	even	farther.Allow	any	authenticated	users	to	have	access	to	our	databaseThat's	all	there	is	to	it!	We	are	now	ready	to	implement	authentication	in	our	front-end	application.Front-end	setupBefore	we	can	truly	implement	the	authentication	process	in	our	Remix	app,
as	we	did	in	Supabase,	we	need	to	make	certain	changes,	which	we	will	go	over	before	continuing	on.Implementing	the	authentication	helperSupabase	provides	us	with	various	authentication	helpers	to	integrate	into	our	app	via	a	package	that	can	be	found	here.It	should	be	noted	that	Remix	also	provides	utilities	to	assist	us	in	handling	user	sessions,
but	because	this	article	is	about	Supabase,	we	will	use	their	helper.First,	install	the	Remix	package,	which	will	handle	session	cookie	management	behind	the	scenes.	They	also	provide	clear	and	straightforward	documentation	on	how	to	build	it,	which	we	will	follow	but	modify	somewhat.$	npm	install	@supabase/auth-helpers-remixIn	my	previous
blogpost	about	Supabase,	I	created	a	function	to	use	the	supabase	client	ONLY	in	the	server-side,	but	now	we	will	need	to	use	a	supabase	client	in	the	client-side	as	well,	so	we	will	implement	it.First	let's	update	the	server-side	supabase	client:supabase.tsimport	{	createServerClient	}	from	"@supabase/auth-helpers-remix";import	type	{	Database	}
from	"~/types/database";//	Initialize	a	supabase	client	to	be	use	on	the	server-sideexport	const	getSupabaseServerClient	=	(request:	Request,	response:	Response)	=>	createServerClient(process.env.API_URL!,	process.env.API_KEY!,	{	request,	response,	});Now	we	are	going	to	update	the	root.tsx	file	which	serves	as	the	entry	point	of	the	application.
We	are	going	to	create	a	client-side	supabase	client	in	it	and	expose	it	to	every	routes	of	the	application.We	will	also	build	logic	to	synchronize	our	client	and	server	supabase	clients	in	the	event	that	the	client-side	becomes	desynchronized.First	let's	return	the	API_KEY	and	API_URL	and	the	session	from	the	server	to	the	client	with	the	loader
function:root.tsx//	Return	the	user	session	and	env	values	to	the	clientexport	const	loader	=	async	({	request	}:	LoaderArgs)	=>	{	const	response	=	new	Response();	const	env	=	{	API_URL:	process.env.API_URL!,	API_KEY:	process.env.API_KEY!,	};	const	supabase	=	createServerClient(process.env.API_URL!,	process.env.API_KEY!,	{	request,
response	});	//	Retrieves	the	user	session	to	synchronize	it	with	the	client	const	{	data:	{	session	},	}	=	await	supabase.auth.getSession();	return	json({	env,	session	},	{	headers:	response.headers	});};Now	we	will	retrieve	those	values	in	the	client	component,	store	the	Supabase	client	in	a	state,	then	implement	the	synchronization	logic	in	a
useEffect,	and	finally	pass	the	supabase	client	to	every	routes	via	the	Outlet	context:root.tsxexport	default	function	App()	{	const	submit	=	useSubmit();	const	{	env,	session	}	=	useLoaderData();	const	serverAccessToken	=	session?.access_token;	//	Create	a	single	instance	of	the	supabase	client	to	be	used	on	the	client	side	const	[supabase]	=
useState(createBrowserClient(env.API_URL,	env.API_KEY));	//	Synchronize	the	client-side	supabase	instance	with	the	server-side	one	useEffect(()	=>	{	const	{	data:	{	subscription	},	}	=	supabase.auth.onAuthStateChange((event,	session)	=>	{	//	If	the	tokens	are	not	the	same,	this	means	client	and	server	are	not	synchronized	//	Thus	we	send	a	get
request	to	trigger	the	loader	which	will	provide	the	client	a	new	Supabase	client	instance	if	(session?.access_token	!==	serverAccessToken)	{	submit(null,	{	method:	"get"	});	}	});	return	()	=>	{	subscription.unsubscribe();	};	},	[serverAccessToken,	submit,	supabase.auth]);	return	({/**	Pass	the	supabase	client	down	to	every	child	components	via	the
outlet	context	*/});}We	can	now	conduct	API	calls	to	the	Supabase	API	from	the	client,	and	we	have	ensured	that	the	client	and	server	remain	synced.The	next	step	is	to	develop	a	login	and	a	register	page	to	authenticate	a	user	in	our	application.	Let's	start	with	the	registration	page;	you'll	see	a	games	folder	and	a	games.tsx	file	below	the	files	tree
within	the	route	folder;	we'll	go	over	this	later.routesgames$gameId.tsxcreate.tsxindex.tsxgames.tsxindex.tsxlogin.tsxregister.tsxLet's	create	the	register	page.First,	we	will	check	the	server	to	see	if	the	user	has	already	been	authenticated;	if	so,	he	will	be	redirected	to	the	dashboard:register.tsxexport	const	loader	=	async	({	request	}:	LoaderArgs)
=>	{	const	response	=	new	Response();	const	supabase	=	getSupabaseServerClient(request,	response);	const	{	data:	{	session	},	}	=	await	supabase.auth.getSession();	if	(session)	{	return	redirect("/games",	{	headers:	response.headers	});	}	return	null;};Now,	in	the	client	component,	we	will	retrieve	the	supabase	client	from	the	Outlet	context	in
order	to	execute	the	authentication	API	call	to	Supabase	from	the	client;	if	the	call	is	successful,	the	user	will	be	sent	to	the	dashboard;	otherwise,	an	error	message	will	be	displayed:register.tsxexport	default	function	Register()	{	const	{	supabase	}	=	useOutletContext();	const	submit	=	useSubmit();	const	[registerError,	setRegisterError]	=
useState();	const	methods	=	useForm({	defaultValues:	{	email:	"",	password:	"",	},	resolver:	yupResolver(registerFormValidation),	});	const	onSubmit:	SubmitHandler	=	async	(values)	=>	{	const	{	error	}	=	await	supabase.auth.signUp(values);	if	(error)	{	setRegisterError(error.message);	}	else	{	//	Trigger	the	current	route	loader	via	a	get	request,
this	will	redirect	the	user	to	the	dashboard	submit(null,	{	method:	"get"	});	}	};	return	(//	Your	form...);}Moving	on	to	the	login	page,	you	can	use	the	same	logic	as	the	registration	page,	with	the	only	significant	difference	being	in	your	form	submit	handler	function,	which	we	will	refer	to	as	the	sign	in	API	route	rather	than	the	register	API	route:
const	onSubmit:	SubmitHandler	=	async	(values)	=>	{	const	{	error	}	=	await	supabase.auth.signInWithPassword(values);	if	(error)	{	setLoginError(error.message);	}	else	{	//	Send	a	get	request	to	trigger	the	current	route	loader	submit(null,	{	method:	"get"	});	}	};Great!	We	now	have	routes	to	register	and	authenticate	a	user,	and	thanks	to	the
helper	package	we	previously	installed,	we	don't	need	to	deal	with	session/cookies.	You	can	check	the	application	tab	in	Chrome	Dev	Tools	and	see	that	a	cookie	is	created	when	you	are	successfully	authenticated.Let's	dive	into	the	last	part	of	this	tutorial,	which	will	block	unauthenticated	users	from	accessing	the	dashboard,	because	you	may	still
access	it	without	being	authenticated,	which	we	don't	want.Let's	take	a	look	back	at	the	routes	files	tree:routesgames	{	//	Handle	session	changes	});	Step	8:	Implement	Email	Confirmations	(Optional)	If	you	enabled	email	confirmations	in	Step	3,	make	sure	you	handle	the	confirmation	URL	in	your	application.	Check	for	a	`confirmation_sent_at`
timestamp	in	your	users	table	to	confirm	the	user's	email	status.	Step	9:	Deploy	and	Test	Your	Application	Deploy	your	application	using	your	preferred	hosting	service.	Test	the	registration	and	login	functionalities	to	ensure	everything	is	working	as	expected.	Step	10:	Monitor	and	Maintain	Regularly	check	the	Supabase	dashboard	for	any	issues	or
updates.	Monitor	user	activity	and	manage	your	database	as	your	application	grows.Supabase	Auth	makes	it	easy	to	implement	authentication	and	authorization	in	your	app.	We	provide	client	SDKs	and	API	endpoints	to	help	you	create	and	manage	users.Your	users	can	use	many	popular	Auth	methods,	including	password,	magic	link,	one-time
password	(OTP),	social	login,	and	single	sign-on	(SSO).	Authentication	and	authorization	are	the	core	responsibilities	of	any	Auth	system.Authentication	means	checking	that	a	user	is	who	they	say	they	are.Authorization	means	checking	what	resources	a	user	is	allowed	to	access.Supabase	Auth	uses	JSON	Web	Tokens	(JWTs)	for	authentication.	For	a
complete	reference	of	all	JWT	fields,	see	the	JWT	Fields	Reference.	Auth	integrates	with	Supabase's	database	features,	making	it	easy	to	use	Row	Level	Security	(RLS)	for	authorization.	You	can	use	Supabase	Auth	as	a	standalone	product,	but	it's	also	built	to	integrate	with	the	Supabase	ecosystem.Auth	uses	your	project's	Postgres	database	under	the
hood,	storing	user	data	and	other	Auth	information	in	a	special	schema.	You	can	connect	this	data	to	your	own	tables	using	triggers	and	foreign	key	references.Auth	also	enables	access	control	to	your	database's	automatically	generated	REST	API.	When	using	Supabase	SDKs,	your	data	requests	are	automatically	sent	with	the	user's	Auth	Token.	The
Auth	Token	scopes	database	access	on	a	row-by-row	level	when	used	along	with	RLS	policies.	Supabase	Auth	works	with	many	popular	Auth	methods,	including	Social	and	Phone	Auth	using	third-party	providers.	See	the	following	sections	for	a	list	of	supported	third-party	providers.	Charges	apply	to	Monthly	Active	Users	(MAU),	Monthly	Active	Third-
Party	Users	(Third-Party	MAU),	and	Monthly	Active	SSO	Users	(SSO	MAU)	and	Advanced	MFA	Add-ons.	For	a	detailed	breakdown	of	how	these	charges	are	calculated,	refer	to	the	following	pages:Pricing	MAUPricing	Third-Party	MAUPricing	SSO	MAUAdvanced	MFA	-	PhoneEdit	this	page	on	GitHub	Enable	social	logins	with	the	click	of	a	button.
Google,	Facebook,	GitHub,	Azure	(Microsoft),	Gitlab,	Twitter,	Discord,	and	many	more.There	are	two	parts	to	every	Auth	system:Authentication:	should	this	person	be	allowed	in?	If	yes,	who	are	they?Authorization:	once	they	are	in,	what	are	they	allowed	to	do?Supabase	Auth	is	designed	to	work	either	as	a	standalone	product,	or	deeply	integrated
with	the	other	Supabase	products.Postgres	is	at	the	heart	of	everything	we	do,	and	the	Auth	system	follows	this	principle.	We	leverage	Postgres'	built-in	Auth	functionality	wherever	possible.You	can	authenticate	your	users	in	several	ways:Email	&	password.Magic	links	(one-click	logins).Social	providers.Phone	logins.We	provide	a	suite	of	Providers
and	login	methods.You	can	enable	third-providers	with	the	click	of	a	button	by	navigating	to	Authentication	>	Settings	>	External	OAuth	Providers	and	inputting	your	Client	ID	and	Secret	for	each.When	you	need	granular	authorization	rules,	nothing	beats	PostgreSQL's	Row	Level	Security	(RLS).Policies	are	PostgreSQL's	rule	engine.	They	are
incredibly	powerful	and	flexible,	allowing	you	to	write	complex	SQL	rules	which	fit	your	unique	business	needs.Get	started	with	our	Row	Level	Security	Guides.Authentication	only	gets	you	so	far.	When	you	need	granular	authorization	rules,	nothing	beats	PostgreSQL's	Row	Level	Security	(RLS).	Supabase	makes	it	simple	to	turn	RLS	on	and
off.Policies	are	PostgreSQL's	rule	engine.	They	are	incredibly	powerful	and	flexible,	allowing	you	to	write	complex	SQL	rules	which	fit	your	unique	business	needs.With	policies,	your	database	becomes	the	rules	engine.	Instead	of	repetitively	filtering	your	queries,	like	this	...const	loggedInUserId	=	'd0714948'let	{	data,	error	}	=	await	supabase
.from('users')	.select('user_id,	name')	.eq('user_id',	loggedInUserId)//	console.log(data)//	=>	{	id:	'd0714948',	name:	'Jane'	}...	you	can	simply	define	a	rule	on	your	database	table,	auth.uid()	=	user_id,	and	your	request	will	return	the	rows	which	pass	the	rule,	even	when	you	remove	the	filter	from	your	middleware:let	{	data,	error	}	=	await
supabase.from('users').select('user_id,	name')//	console.log(data)//	Still	=>	{	id:	'd0714948',	name:	'Jane'	}A	user	signs	up.	Supabase	creates	a	new	user	in	the	auth.users	table.Supabase	returns	a	new	JWT,	which	contains	the	user's	UUID.Every	request	to	your	database	also	sends	the	JWT.Postgres	inspects	the	JWT	to	determine	the	user	making	the
request.The	user's	UID	can	be	used	in	policies	to	restrict	access	to	rows.Supabase	provides	a	special	function	in	Postgres,	auth.uid(),	which	extracts	the	user's	UID	from	the	JWT.	This	is	especially	useful	when	creating	policies.Supabase	makes	it	simple	to	manage	your	users.When	users	sign	up,	Supabase	assigns	them	a	unique	ID.	You	can	reference
this	ID	anywhere	in	your	database.	For	example,	you	might	create	a	profiles	table	referencing	id	in	the	auth.users	table	using	a	user_id	field.Supabase	provides	the	routes	to	sign	up,	log	in,log	out,	and	manage	users	in	your	apps	and	websites.Sign	in:	app.supabase.comLast	updated	February	26,	2024IntroductionAuthentication	is	a	cornerstone	of
modern	web	and	mobile	applications,	ensuring	that	users	can	securely	access	their	accounts	and	data.	Supabase	simplifies	the	authentication	process	by	providing	a	powerful,	easy-to-implement	authentication	system	that	supports	everything	from	email	and	password	login	to	third-party	providers.	This	guide	will	walk	you	through	the	steps	to
integrate	Supabase	Auth	into	your	application,	providing	your	users	with	a	seamless	and	secure	authentication	experience.Step-by-Step	GuideSet	Up	Your	Supabase	ProjectEnable	Authentication	MethodsIn	the	Supabase	dashboard,	go	to	the	"Authentication"	section	and	select	"Settings".	Here,	you	can	enable	various	authentication	methods,
including	email/password,	magic	links,	and	third-party	providers	like	Google,	GitHub,	and	more.Configure	Third-party	Providers	(Optional)If	you	choose	to	enable	third-party	authentication,	you'll	need	to	set	up	OAuth	credentials	with	each	provider	and	input	these	into	your	Supabase	project	settings.	Each	provider	has	a	different	setup	process,	so
refer	to	the	Supabase	documentation	for	detailed	instructions.Install	the	Supabase	Client	LibraryInitialize	Supabase	in	Your	ApplicationImplement	Sign	Up	and	Sign	InHandle	Authentication	StateSecure	Your	Application	with	Row	Level	SecurityEnable	Row	Level	Security	(RLS)	on	your	database	tables	to	ensure	that	users	can	only	access	data	they
are	permitted	to	see.	This	is	done	directly	in	the	PostgreSQL	interface	within	the	Supabase	dashboard.Thoroughly	test	your	authentication	flow,	including	sign-up,	sign-in,	password	recovery,	and	third-party	logins,	to	ensure	everything	works	smoothly	and	securely.ConclusionIntegrating	authentication	with	Supabase	provides	a	robust,	secure,	and
scalable	solution	for	managing	user	access	in	your	application.	By	following	these	steps,	you	can	quickly	implement	a	variety	of	authentication	methods,	giving	your	users	a	seamless	experience	while	keeping	their	data	safe.	As	you	continue	to	develop	your	application,	explore	Supabase's	advanced	Auth	features	to	further	enhance	security	and	user
experience.Was	this	article	helpful?	In	this	article,	you'll	learn	the	basic	key	concepts	that'll	help	you	grasp	how	authentication	and	authorization	work.	You'll	start	by	learning	what	authentication	and	authorization	are,	and	then	learn	how	to	implement	authentication	in	your	applications	using	Supabase	auth.Table	of	Contents	You'll	need	the	following
to	make	the	most	out	of	this	article:Basic	programming	knowledge.A	Supabase	project	to	follow	along.And	a	text	editor	to	try	out	the	example	code	snippets.	In	simple	terms,	authentication	is	the	process	of	a	user	identifying	themselves	to	a	system	and	the	system	confirming	that	the	user	is	who	they	claim	to	be.	On	the	other	hand,	authorization	is	the
process	of	the	system	determining	which	parts	of	the	application	the	user	is	allowed	to	view	or	interact	with,	and	which	parts	the	user	is	not	allowed	to	access.	A	flowchart	depicting	the	user	authentication	processThe	first	time	a	user	interacts	with	a	system,	they	will	be	requested	to	register.	Typically,	the	user	will	provide	a	piece	of	information	and
a	secret	that	is	meant	to	be	known	only	by	them	and	the	system.	This	is	the	registration	part	of	the	authentication	process.The	next	time	the	user	interacts	with	the	same	system,	they	will	be	required	to	provide	the	identifying	information	along	with	the	previously	defined	secret	in	order	to	verify	their	identity.	The	device	the	user	initiates	the
interaction	from	is	the	client	and	the	system	is	the	server.	Once	the	system	verifies	the	user,	it	sends	over	some	information	to	the	client	about	the	user.	Because	this	process	takes	time	and	requires	some	action	from	the	user,	the	client	will	store	this	information	and	send	it	back	to	the	system	whenever	the	user	needs	to	access	the	system.	This
reduces	friction	by	not	requiring	the	user	to	actively	re-authenticate	every	single	time.	This	creates	a	user	session.	A	sequence	diagram	showing	session	management	in	a	client-server	architectureThe	server	can	pass	the	user's	information	to	the	client	in	two	ways	through	tokens	or	session	ids.In	the	case	of	tokens,	the	server	generates	a	signed	token
and	passes	it	to	the	client.	This	token	is	typically	a	JWT	and	may	contain	information	regarding	the	user.	The	client	will	store	this	token	and	send	it	back	to	the	server	every	time	the	user	makes	a	request.	The	server	is	able	to	verify	the	integrity	of	the	token	because	it	signed	it.	This	is	referred	to	as	stateless	authentication	because	the	token	is	self
contained	and	the	server	does	not	need	to	store	session	data	in	a	database	or	cache.	In	the	case	of	cookies,	the	server	creates	a	record	of	the	user	session	in	a	database	or	a	cache	that	will	include	a	session	ID.	The	server	send	this	session	ID	to	the	client.The	client	stores	this	session	ID	in	a	cookie	and	sends	it	back	to	the	server	whenever	the	user
makes	a	request.	The	session	ID	is	a	random	string	that	acts	as	pointer	to	the	actual	user	record	in	the	database.	When	the	server	receives	this	cookie,	it	matches	the	session	ID	it	contains	to	its	session	records,	and	then	matches	that	record	to	the	user	data	in	the	database.	This	is	referred	to	as	stateful	authentication	because	a	database	look-up	is
needed.	An	authentication	factor	refers	to	a	type	of	credential	that	can	be	used	to	verify	a	user's	identity.	There	are	3	factors	typically	used	in	the	authentication	process,	and	they	are:Something	you	know:	an	examples	is	a	password.Something	you	have:	an	example	is	a	token	sent	to	your	phone.Something	you	are:	an	example	is	your	fingerprint.
Authentication	strategies	refer	to	the	processes	used	to	verify	a	user.	Different	types	of	authentication	strategies	include:	This	refers	to	the	traditional	way	of	users	identifying	themselves	by	providing	a	text-based	secret	that	is	user	defined.	Typically,	the	system	handles	the	entire	process	on	its	servers	and	is	responsible	for	security	and	reliability.	In
this	approach,	the	system	verifies	the	users	identity	without	requiring	user	defined	passwords.	The	system	will,	instead,	generate	a	one	time	password	(OTP)	and	send	to	the	user.	This	OTP	is	then	used	in	place	of	a	password	to	gain	access	to	the	system.	Examples	include	magic	links,	where	the	system	sends	a	code	to	the	users	email.	The	system
attempts	to	verify	the	user	is	who	they	claim	to	be	by	requiring	an	extra	piece	of	information	after	the	primary	authentication	has	checked	out.	This	can	be	an	OTP	sent	to	the	user	via	email	or	SMS,	or	it	can	be	by	requiring	the	users'	biometric	information	before	the	system	grants	access.	This	is	similar	to	2FA,	except	that	the	system	will	use	more
than	one	extra	method	to	verify	the	users	identity.	The	extra	methods	or	factors	used	in	both	MFA	and	2FA	are	usually	external	to	the	system,	such	as	an	SMS	requiring	a	phone.	OAuth	is	an	authorization	framework	that	allows	clients	to	access	information	from	an	external	server	on	the	user's	behalf.	The	external	server	prompts	the	user	for
permission	to	share	the	requested	resources	with	the	client.	After	user	permits	the	action,	the	external	server	issues	an	access	token	to	the	client.	The	client	then	gives	this	access	token	to	the	original	server,	which	verifies	the	token's	validity	and	manages	access	to	the	requested	resources.	OAuth	2.0	is	the	latest	version	of	OAuth	and	is	the	more
widely	used	framework.	OAuth	2.0	extends	support	for	non-browser	based	systems.	Social	Authentication	is	based	on	OAuth	2.0	but	in	this	case,	the	external	server	that	the	client	redirects	the	user	to	is	typically	a	social	media	platform.	This	is	the	type	of	authentication	process	carried	out	whenever	you	see	a	"Continue	with	Twitter/X"	button	on	an
authentication	page.	SAML	stands	for	Security	Assertion	Markup	Language.	It	is	a	standard	for	passing	authentication	and	authorization	information	between	systems.	One	system	acts	as	the	requesting	system	or	the	service	provider	(SP)	and	the	other	system	holds	the	requested	information	or	acts	as	the	Identity	Provider	(IdP).	On	receiving	this
request,	the	identity	provider	will	generate	some	statements	in	SAML	form	that	contains	some	user	information.	The	service	provider	then	uses	this	information	to	decide	how	to	handle	the	user	in	relation	with	its	protected	resources.	SSO	refers	to	Single	Sign	On.	This	is	an	authentication	strategy	that	lets	users	sign	in	through	one	system/application
that	then	lets	them	access	multiple	applications	within	the	same	network.	This	improves	the	user	experience	by	not	requiring	the	user	to	log	in	to	different	related	applications.	An	example	of	this	is	Google	workspace.	You	don't	need	to	log	into	Docs	separately	if	you	are	already	logged	into	your	Gmail	account.	SSO	is	facilitated	by	SAML	as	SAML
provides	a	standard	authentication	mechanism	and	allows	different	systems	to	trust	each	other.	Authentication	involves	handling,	moving,	and	storing	sensitive	user	information	in	relation	to	protected	server	resources.	This	makes	security	and	best	practices	an	important	aspect	of	an	authentication	system.There	are	some	basic	steps	you	can	take	to
greatly	increase	the	security	of	your	authentication	systems.	These	include:Enforcing	stronger	passwords.Requiring	the	user	to	register	an	extra	factor	to	enable	2FA.Encrypting	sensitive	data	as	it	is	being	transferred	via	HTTPS.Storing	passwords	in	an	encrypted	manner.Using	standard	authentication	frameworks	like	OAuth	2.0.There	are	certain
compliances	that	your	system	should	consider	when	handling	sensitive	user	data	beyond	specific	authentication	information.	This	is	even	more	so	if	operating	in	certain	countries	or	handling	enterprise	applications.	These	compliances	include:GDPR:	This	compliance	enforces	standards	around	data	handling	including	confidentiality	and
integrity.HIPAA:	This	compliance	applies	to	medical	data.	It	expects	high	levels	of	integrity.SOC:	This	is	a	framework	more	generally	required	of	cloud	technologies.	It	is	based	on	the	American	Institute	of	CPAs	and	covers	aspects	of	privacy,	security,	availability,	integrity	and	confidentiality.Keeping	all	this	in	mind,	you	will	find	that	it	is	often	easier	to
use	dedicated	authentication	services	for	your	applications	instead	of	rolling	out	your	own	auth.There	are	lots	of	options	for	this,	including	dedicated	authentication	services	such	as	Clerk	and	Auth0,	and	Backend-as-a-Service	such	as	Supabase	and	Firebase.	In	this	case,	let's	take	a	look	at	the	Supabase	authentication	offering.	Supabase	is	an	open
source	Backend	as	a	Service	(BaaS)	platform	that	makes	developing	a	backend	for	your	applications	very	easy	and	fast.	It	is	based	on	open	source	technologies	and	actively	supports	the	open	source	ecosystem.	Supabase	offers	common	services	that	most	backend	applications	will	require.	These	services	are:Database:	This	is	a	fully	featured	Postgres
database.Authentication:	This	is	an	enterprise	ready	authentication	service	that	is	based	on	a	fork	of	the	goTrue	server.Realtime:	This	is	an	API	that	adds	the	ability	to	use	real-time	capabilities	in	your	applications.Storage:	This	is	a	storage	service	which	is	an	s3	wrapper.Edge	Functions:	These	are	serverless	functions	that	run	on	the	edge.	Powered	by
the	Deno	runtime.Vector:	This	is	a	vector	database	that	makes	it	easier	to	work	with	embeddings	in	your	AI	applications.Supabase	is	SOC2,	HIPAA	and	GDPR	compliant,	self-host-able	and	open	source.	Furthermore,	their	authentication	service	exposes	many	strategies,	giving	you	full	control	over	your	data	and	can	be	used	independently	of	their	other
offerings.	This	and	their	auto	documenting	API	makes	it	a	very	good	choice	for	your	applications.	The	first	step	is	to	set	up	your	Supabase	project's	auth	settings.	You	can	enable	the	exact	authentication	methods	you	want	to	use	via	the	settings.	There	are	three	ways	you	can	start	using	Supabase	auth	in	your	project:	You	can	directly	use	the
authentication	service	in	your	applications	by	calling	the	auth	endpoint	and	passing	the	user	information	to	it.	You	can	also	get,	update	and	delete	your	users.	The	API	is	automatically	available	when	you	create	a	project	via	the	Supabase	console	and	can	be	called	like	so:	const	res	=	await	fetch("https:///auth/v1/signup",	{	method:	"POST",	headers:	{
authorization:	"Bearer	YOUR_SUPABASE_KEY",	"content-type":	"application/json",	},	body:	JSON.stringify({	email:	"user-email",	password:	"user-password",	}),});	Supabase	offers	a	few	SDKs	(software	development	kits)	in	different	programming	languages	meant	to	make	interacting	with	your	Supabase	project	straightforward.	Languages	officially
supported	include	Dart	and	JavaScript,	with	Python	and	others	having	strong	community	support.	The	procedure	for	getting	started	involves	adding	the	SDK	as	a	dependency,	then	connecting	your	application	to	your	Supabase	project.	In	the	case	of	the	JavaScript	SDK,	this	would	look	something	like	this:npm	install	@supabase/supabase-js
Supabaseimport	{	createClient	}	from	'@supabase/supabase-js'	const	supabaseUrl	=	'https://.supabase.co'const	supabaseKey	=	process.env.SUPABASE_ANON_KEYconst	supabase	=	createClient(supabaseUrl,	supabaseKey)Then	you	can	access	the	authentication	methods	under	the	auth	namespace	like	so:const	{	data,	error	}	=	await
supabase.auth.signUp({	email:	'user	email',	password:	'user	password',})	Supabase	provides	helper	libraries	to	make	authentication	using	their	service	even	easier.	These	libraries	provide	customizable	login	screens	that	support	magic	links,	password	based	and	social	login	strategies.	Currently,	the	libraries	are	available	for	JavaScript	and	Flutter.
Supabase	also	provides	a	separate	SSR	(Server	Side	Rendering)	package	for	applications	that	use	server	side	frameworks	and	require	a	Supabase	access	token	to	be	available	to	them.To	start	using	React	Auth	UI,	as	an	example,	first	you	need	to	install	the	dependencies	as	shown	below:npm	install	@supabase/supabase-js	@supabase/auth-ui-react
@supabase/auth-ui-sharedThen	you	can	start	using	the	library	after	initializing	Supabase	as	in	the	SDK	example	above.	Here	is	some	sample	code	that	shows	how	to	use	the	auth	UI	library	in	a	React	application:import	{	useEffect	}	from	"react";import	{	useNavigate	}	from	"react-router-dom";import	{	Auth	}	from	"@supabase/auth-ui-react";import	{
ThemeSupa	}	from	"@supabase/auth-ui-shared";import	{	supa	}	from	"../constants";	const	AuthUi	=	()	=>	{	const	navigate	=	useNavigate();	useEffect(()	=>	{	const	{	data:	{	subscription	},	}	=	supa.auth.onAuthStateChange((event)	=>	{	if	(event	===	"SIGNED_IN")	{	navigate("/authenticated");	}	});	return	()	=>	subscription.unsubscribe();	},
[navigate]);	return	(

